Integration of electronic medical records and neighborhood contextual indicators into machine learning strategies for identifying pregnant individuals at risk of depression in underserved communities
将电子病历和社区背景指标整合到机器学习策略中,以识别服务欠缺社区中面临抑郁风险的孕妇
基本信息
- 批准号:10741143
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAir PollutionAreaAtlasesCensusesChicagoChild CareCitiesClinicClinicalCommunitiesComputerized Medical RecordComputing MethodologiesDataDevelopmentDiagnosisDiscipline of obstetricsDisparateEarly DiagnosisEconomicsElasticityEthnic OriginExclusionExposure toFoodGestational DiabetesGoalsHealthHealth Services AccessibilityHealthcareHigh Risk WomanIndividualInterventionLatina PopulationLinkLongitudinal StudiesLow incomeMachine LearningMeasuresMental DepressionMethodsMinority WomenModelingMonitorMood DisordersNeighborhoodsNot Hispanic or LatinoObesityOutcomePatient Self-ReportPatientsPerformancePostpartum DepressionPostpartum PeriodPovertyPoverty AreasPremature BirthProxyRaceRecordsRiskRisk AssessmentStructural RacismSubstance abuse problemTestingTrainingTransportationUnemploymentViolenceWomanWorkantepartum depressionartificial neural networkblack womenbuilt environmentclinical carecontextual factorsdata modelingdata portaldepressive symptomsearly pregnancyexperiencehigh riskhigh risk populationimprovedindexinginnovationinsightlearning strategymachine learning frameworkmachine learning modelmachine learning predictionmetropolitanmodel buildingnegative affectoutcome predictionperinatal outcomesperipartum depressionpredictive modelingpregnantpreventive interventionracial minorityremediationsegregationsocialsocial health determinantssociodemographic variablesstressorunderserved communityunintended pregnancyurban poverty areawomen of color
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of this proposal is to optimize the use of computational methods using electronic medical records
(EMRs), such as machine learning (ML) models, to predict depression during pregnancy and the first year
postpartum (perinatal depression, PND) in Minoritized Women of Color. Most ML models forecast postpartum
depression (PPD) based on EMR from middle class Non-Hispanic White individuals. However, our results show
that Non-Hispanic Black Women (NHBW) have higher rates of depression (23% versus the 12% US average)
and depression during early pregnancy in NHBW is far more common than PPD. Here, we propose to optimize
the application of ML models to PND in three keyways. First, we will use bias-mitigation approaches, to limit what
it is called model prediction performance bias, defined as the disparate model prediction outcome with respect
to certain socio-demographic variables, such race/ethnicity or age. Second, we will develop ML models that can
offer interpretable outcomes and provide insights for clinical interventions. ML models are often “black boxes”,
making it difficult to know the direction and magnitude of variables associated with the model outcome. Third,
current EMR-based ML models to predict PND rarely include community social determinants of health (SDoH).
SDoH both at the individual-level (e.g., racial minority, poverty) and at the neighborhood-level (e.g., violence,
access to care) have been linked with increased risk of PND. NHBW are disproportionally affected by the
negative health impacts of SDoH, including higher risk of PND and preterm birth. Despite their importance, SDoH
have not been considered in assessing risk of PND using ML models, particularly among Minority Women of
Color who experience disproportionate burden of social and economic hardship. This limits the model prediction
performance in women who are exposed to higher contextual risks. We hypothesize that interpretable ML
models trained on sufficient numbers of EMR records from Minoritized Women of Color and that integrate
neighborhood-level contextual factors (a proxy for community-level stressors) can substantially improve the
prediction of PND in women at higher risk. We aim to establish a robust and interpretable ML framework that
combines individual- and community-level SDoH to predict PND for Minoritized Women of Color who have been
rarely represented in data modeling. Our long-term vision is to integrate our interpretable ML model into routine
clinical care for early detection, diagnosis, and treatment of PND. We will capitalize on large urban OB/GYN
clinics (>70,000 patients) primarily serving Minoritized Women of Color (50% NHBW, 30% Latinas) living in the
Chicago area. Neighborhood contextualized information will be obtained from the US Census Bureau and the
Chicago Health Atlas. In Aim 1, we will develop interpretable ML models to predict PND in at-risk women using
EMRs. In Aim 2, we will also incorporate neighbor-level SDoH factors into model building. Our innovative and
interpretable prediction models informed by EMR, and neighborhood contextual data could be leveraged in
clinical care to identify women more accurately at greatest risk of PND and by informing preventive intervention.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANG DAI其他文献
YANG DAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANG DAI', 18)}}的其他基金
Computational Prediction of MHC Class II Epitopes
MHC II 类表位的计算预测
- 批准号:
7080713 - 财政年份:2006
- 资助金额:
$ 41.94万 - 项目类别:
Computational Prediction of MHC Class II Epitopes
MHC II 类表位的计算预测
- 批准号:
7187405 - 财政年份:2006
- 资助金额:
$ 41.94万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Continuing Grant
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant