Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
基本信息
- 批准号:7451407
- 负责人:
- 金额:$ 8.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAfferent NeuronsAnimalsAxonChondroitin Sulfate ProteoglycanChronicClassClinicCore FacilityCorticospinal TractsDataDeafferentation procedureDescending Spinal Cord TractDoctor of PhilosophyFacultyGene Transfer TechniquesGeneticGoalsGrowthGrowth InhibitorsHumanHypersensitivityImageImaging technologyInjuryKnockout MiceLesionLondonMediatingMethodologyMolecular and Cellular BiologyMotorMusMyelinNatural regenerationNeurologyPhotonsPhysiologyPlanning TechniquesPlasticsPositioning AttributeProteinsResearchRodentRole playing therapySideSocietiesSpinalSpinal CordSpinal cord injurySpinal cord injury patientsStrokeSupervisionTherapeuticTimeTrainingTraumaTraumatic CNS injuryage groupaxon growthaxon regenerationcollegedesignfunctional restorationin vivoinhibitor/antagonistmulti-photonnervous system disorderoutcome forecastpainful neuropathyskills
项目摘要
DESCRIPTION (provided by applicant):
The inability of CNS axons to regenerate and reinnnervate appropriate targets after trauma results in chronic compromise of function, which presents a devastating prognosis for TBI, MS, stroke and SCI patients. Myriad studies have identified two broad classes of axon growth inhibitor (AGI) proteins responsible for axon growth arrest, the myelin associated inhibitors (Nogo, MAG, OMgp) and the Chondroitin Sulfate Proteoglycans (CSPGs). Experimental paradigms that negate the activity of these inhibitors in vivo have shown a slight increase in regeneration of damaged axons, but a more dramatic restitution of function. Before therapeutic options move into the clinic it is necessary to define the mechanism whereby anti-AGI strategies restore function. An alternative hypothesis to long distance regeneration-mediated restitution of function would be the reorganization of intact spinal circuitry that often remains after SCI. It is the central goal of this proposal to comprehensively evaluate the potential for intact spinal circuits to replace lost connections, and furthermore define whether negating the action of AGIs supports adaptive or maladaptive axonal reorganization. Using a combination of anatomical, electrophysiological, genetic and in vivo imaging methodology we plan to delineate the plastic potential of intact spinal circuitry. The Neurology department at Yale is inimitably positioned to facilitate these studies owing to its world-class faculty and the availability of cutting-edge core facilities, including multi-photon in vivo imaging technology and mouse transgenesis facilities. The continued training in molecular and cellular biology have I have received at Yale as a postdoctoral associate has uniquely complimented the whole-animal physiology skills that I mastered during my PhD at King's College London, UK. Under the earnest supervision of Prof. Stephen Strittmatter, it is my immediate goal to apply these potent skills to answering some of the fundamental questions that remain in the field of CNS axon regeneration, such as; is long distance regeneration necessary for recapitulation of function? Is the adult CNS under tonic growth inhibition due to the continued expression of inhibitor proteins? Furthermore is the adult CNS wired with contingent plans for plasticity in case of injury? In the long-term it is my overall goal to initiate an independent research lab and continue pursing my ultimate goal of assisting in the design of therapeutic strategies for SCI patients.
In summary, we plan to use anatomical, electrophysiological, genetic and in vivo imaging methodology to define the extent of plasticity within intact spinal circuitry and investigate the capacity of de novo circuits to restore function after spinal cord and therefore reduce the burden of this neurological disease borne by every age group, by every segment of society, by people all over the world.
描述(由申请人提供):
中枢神经系统轴突在创伤后不能再生和重新支配适当的靶点,导致慢性功能损害,这对脑外伤、多发性硬化、卒中和脊髓损伤患者来说是毁灭性的预后。大量研究已经确定了两大类轴突生长抑制蛋白(AGI),它们是髓鞘相关抑制物(Nogo,MAG,OMGp)和硫酸软骨素蛋白多糖(CSPGs)。在体内否定这些抑制物活性的实验范式显示,受损轴突的再生略有增加,但功能恢复得更为戏剧性。在治疗方案进入临床之前,有必要确定抗AGI策略恢复功能的机制。远距离再生介导的功能恢复的另一种假说是脊髓损伤后经常保留的完整脊髓回路的重组。这项建议的中心目标是全面评估完整的脊髓环路取代丢失的连接的潜力,并进一步确定否定AGI的作用是否支持适应性或非适应性轴突重组。使用解剖学、电生理学、遗传学和活体成像方法的组合,我们计划描绘完整的脊髓神经回路的可塑性潜力。耶鲁大学神经病学系拥有世界一流的师资和尖端的核心设施,包括多光子活体成像技术和小鼠转基因设施,因此在促进这些研究方面具有无可比拟的优势。作为一名博士后,我在耶鲁大学继续接受分子和细胞生物学方面的培训,这对我在英国伦敦国王学院攻读博士期间所掌握的全动物生理学技能具有独特的赞誉。在斯蒂芬·斯特里特马特教授的认真指导下,我的直接目标是应用这些强大的技能来回答中枢神经系统轴突再生领域中仍然存在的一些基本问题,例如:长距离再生对于功能的重述是必要的吗?成人中枢神经系统是否由于抑制蛋白的持续表达而受到紧张性生长抑制?此外,成人中枢神经系统是否有在受伤时的可塑性应急计划?从长远来看,我的总体目标是创办一个独立的研究实验室,并继续追求我的最终目标,即协助设计脊髓损伤患者的治疗策略。
综上所述,我们计划使用解剖学、电生理学、遗传学和活体成像方法来定义完整脊髓回路内的可塑性程度,并研究新生回路在脊髓后恢复功能的能力,从而减轻这种神经疾病的负担,由每个年龄段、社会各个阶层和世界各地的人们承担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William B. Cafferty其他文献
William B. Cafferty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William B. Cafferty', 18)}}的其他基金
Defining and exploiting the plasticity transcriptome to repair the damaged spinal cord
定义和利用可塑性转录组来修复受损的脊髓
- 批准号:
10536686 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Defining and exploiting the plasticity transcriptome to repair the damaged spinal cord
定义和利用可塑性转录组来修复受损的脊髓
- 批准号:
10365477 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
PRG3 drives functional plasticity in intact circuits after spinal cord injury
PRG3 驱动脊髓损伤后完整回路的功能可塑性
- 批准号:
9080293 - 财政年份:2016
- 资助金额:
$ 8.99万 - 项目类别:
PRG3 drives functional plasticity in intact circuits after spinal cord injury
PRG3 驱动脊髓损伤后完整回路的功能可塑性
- 批准号:
9230456 - 财政年份:2016
- 资助金额:
$ 8.99万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
8256783 - 财政年份:2008
- 资助金额:
$ 8.99万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
7619168 - 财政年份:2008
- 资助金额:
$ 8.99万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
8126269 - 财政年份:2008
- 资助金额:
$ 8.99万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
8089915 - 财政年份:2008
- 资助金额:
$ 8.99万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 8.99万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 8.99万 - 项目类别:
Discovery Grants Program - Individual