Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
基本信息
- 批准号:8256783
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAfferent NeuronsAnimalsAxonChondroitin Sulfate ProteoglycanChronicClinicCore FacilityCorticospinal TractsDataDeafferentation procedureDescending Spinal Cord TractDoctor of PhilosophyFacultyGene Transfer TechniquesGeneticGoalsGrowthGrowth InhibitorsHumanHypersensitivityImageImaging technologyInjuryKnockout MiceLesionLondonMediatingMethodologyMolecular and Cellular BiologyMotorMusMyelinNatural regenerationNeurologyPhotonsPhysiologyPlanning TechniquesPlasticsPlayPositioning AttributeProteinsResearchRodentRoleSideSocietiesSpinalSpinal CordSpinal cord injurySpinal cord injury patientsStrokeSupervisionTherapeuticTimeTrainingTraumaTraumatic CNS injuryage groupaxon growthaxon regenerationcollegedesignfunctional restorationin vivoinhibitor/antagonistmulti-photonnervous system disorderoutcome forecastpainful neuropathyskills
项目摘要
DESCRIPTION (provided by applicant):
The inability of CNS axons to regenerate and reinnnervate appropriate targets after trauma results in chronic compromise of function, which presents a devastating prognosis for TBI, MS, stroke and SCI patients. Myriad studies have identified two broad classes of axon growth inhibitor (AGI) proteins responsible for axon growth arrest, the myelin associated inhibitors (Nogo, MAG, OMgp) and the Chondroitin Sulfate Proteoglycans (CSPGs). Experimental paradigms that negate the activity of these inhibitors in vivo have shown a slight increase in regeneration of damaged axons, but a more dramatic restitution of function. Before therapeutic options move into the clinic it is necessary to define the mechanism whereby anti-AGI strategies restore function. An alternative hypothesis to long distance regeneration-mediated restitution of function would be the reorganization of intact spinal circuitry that often remains after SCI. It is the central goal of this proposal to comprehensively evaluate the potential for intact spinal circuits to replace lost connections, and furthermore define whether negating the action of AGIs supports adaptive or maladaptive axonal reorganization. Using a combination of anatomical, electrophysiological, genetic and in vivo imaging methodology we plan to delineate the plastic potential of intact spinal circuitry. The Neurology department at Yale is inimitably positioned to facilitate these studies owing to its world-class faculty and the availability of cutting-edge core facilities, including multi-photon in vivo imaging technology and mouse transgenesis facilities. The continued training in molecular and cellular biology have I have received at Yale as a postdoctoral associate has uniquely complimented the whole-animal physiology skills that I mastered during my PhD at King's College London, UK. Under the earnest supervision of Prof. Stephen Strittmatter, it is my immediate goal to apply these potent skills to answering some of the fundamental questions that remain in the field of CNS axon regeneration, such as; is long distance regeneration necessary for recapitulation of function? Is the adult CNS under tonic growth inhibition due to the continued expression of inhibitor proteins? Furthermore is the adult CNS wired with contingent plans for plasticity in case of injury? In the long-term it is my overall goal to initiate an independent research lab and continue pursing my ultimate goal of assisting in the design of therapeutic strategies for SCI patients.
In summary, we plan to use anatomical, electrophysiological, genetic and in vivo imaging methodology to define the extent of plasticity within intact spinal circuitry and investigate the capacity of de novo circuits to restore function after spinal cord and therefore reduce the burden of this neurological disease borne by every age group, by every segment of society, by people all over the world.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William B. Cafferty其他文献
William B. Cafferty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William B. Cafferty', 18)}}的其他基金
Defining and exploiting the plasticity transcriptome to repair the damaged spinal cord
定义和利用可塑性转录组来修复受损的脊髓
- 批准号:
10536686 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Defining and exploiting the plasticity transcriptome to repair the damaged spinal cord
定义和利用可塑性转录组来修复受损的脊髓
- 批准号:
10365477 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
PRG3 drives functional plasticity in intact circuits after spinal cord injury
PRG3 驱动脊髓损伤后完整回路的功能可塑性
- 批准号:
9080293 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
PRG3 drives functional plasticity in intact circuits after spinal cord injury
PRG3 驱动脊髓损伤后完整回路的功能可塑性
- 批准号:
9230456 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
7619168 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
8126269 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
7451407 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Plasticity of intact circuits restores function after a spinal cord injury.
完整电路的可塑性可以在脊髓损伤后恢复功能。
- 批准号:
8089915 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual