Cooling of Atoms in Optical Cavities by Collective Dynamics

通过集体动力学冷却光学腔中的原子

基本信息

  • 批准号:
    EP/E001807/1
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Atoms in a standing wave of light experience a periodic potential called an optical lattice. The study of cold atoms in an optical lattice has become a major frontier of cold atom physics over the last few years. We propose to open a new domain of this study by having the standing waves within an optical cavity. This is expected to induce new collective effects through the common coupling of the atoms to a single photon mode. For example, we anticipate that collective effects within a cavity can be expected to cool a large number N of atoms or molecules to very low temperatures. As our initial theoretical [1,2] and first incomplete experimental studies [3,4,5] show, maximum cooling rates are expected in the presence of a red-detuned laser field and when the cavity leakage rate is as large as the square root of N times the single-particle coupling constants. The phonons, describing the movement of the particles inside the optical lattice potential, are then continuously converted into photons, which leak out through the cavity mirrors. The result is an evaporation of the kinetic energy in the system on a time scale given by the very large leakage rate of photons through the resonator mirror. We propose to study the cooling and related collective effects that are expected to occur naturally in these nonlinear quantum systems and to compare experimental results with detailed and newly developed theoretical models. The aim of the proposal is to begin a study of these effects through a collaboration of experimenters and theorists, bringing together expertise in cold atoms, cavity QED, quantum physics, many body systems and non-linear dynamics. [1] A. Beige, P.L. Knight, and G. Vitiello, Cooling Many Particles at Once, New J. Phys. 7, 96 (2005).[2] A. Beige, P.L. Knight, and G. Vitiello, Cooling many particles to very low temperatures, Braz. J. Phys. 35, 403 (2005).[3] J. F. Roch, K. Vigneron, P. Grelu, A. Sinatra, J. P. Poizat, and P. Grangier, Quantum Nondemolition Measurements using Cold Trapped Atoms, Phys. Rev. Lett. 78, 634 (1997). [4] H. W. Chan, A. T. Black, and V. Vuletic, Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity, Phys. Rev. Lett. 90, 063003 (2003).[5] Private communication with Ph. Grangier.
驻波光中的原子经历一种称为光学晶格的周期性势。近年来,光学晶格中冷原子的研究已成为冷原子物理的一个重要前沿。我们建议通过在光学腔内产生驻波来开辟这项研究的新领域。这有望通过原子与单光子模式的共同耦合来诱导新的集体效应。例如,我们预计,腔体内的集体效应可以将大量N个原子或分子冷却到非常低的温度。正如我们最初的理论[1,2]和第一个不完整的实验研究[3,4,5]所示,在存在红失谐激光场的情况下,当腔泄漏率与N乘以单粒子耦合常数的平方根一样大时,预期会有最大的冷却速率。描述粒子在光学晶格势中运动的声子随后被连续地转换成光子,光子通过腔镜泄漏出去。其结果是系统中的动能在时间尺度上的蒸发,该时间尺度由通过谐振腔反射镜的光子的非常大的泄漏率给出。我们建议研究这些非线性量子系统中自然发生的冷却和相关的集体效应,并将实验结果与详细的和新开发的理论模型进行比较。该提案的目的是通过实验者和理论家的合作开始对这些效应的研究,汇集冷原子,腔QED,量子物理学,许多身体系统和非线性动力学的专业知识。[1]a. Beige,P.L. Knight和G. Vitiello,Cooling Many Particles at Once,New J. Phys. 7,96(2005)。[2]a. Beige,P.L. Knight和G. Vitiello,冷却许多粒子到非常低的温度,Braz。35,403(2005)。[3]J. F. Roch,K. Vigneron,P. Grelu,A. Sinatra,J. P. Poizat,and P. Grangier,Quantum Nondemolition Measurements using Cold Trapped Atoms,Phys. Rev. Lett. 78,634(1997)。[4]H. W. Chan,A. t.陈晓,原子在光腔中的集体辐射诱导冷却,物理学报,2001。90,063003(2003)。[5]与Ph. Grangier的私人交流。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooling atoms into entangled states
  • DOI:
    10.1088/1367-2630/11/8/083008
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    G. Vacanti;Almut Beige
  • 通讯作者:
    G. Vacanti;Almut Beige
New cooling mechanisms for atoms and molecules
  • DOI:
    10.1080/09500340.2011.615472
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Almut Beige;T. Freegarde;F. Renzoni
  • 通讯作者:
    Almut Beige;T. Freegarde;F. Renzoni
Comparing cavity and ordinary laser cooling within the Lamb-Dicke regime
  • DOI:
    10.1080/09500340.2010.543957
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Blake, Tony;Kurcz, Andreas;Beige, Almut
  • 通讯作者:
    Beige, Almut
Rate-equation approach to cavity-mediated laser cooling
  • DOI:
    10.1103/physreva.86.013419
  • 发表时间:
    2012-07-23
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Blake, Tony;Kurcz, Andreas;Beige, Almut
  • 通讯作者:
    Beige, Almut
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Almut Beige其他文献

Photon polarization entanglement from distant dipole sources
来自遥远偶极子源的光子偏振纠缠
  • DOI:
    10.1088/0305-4470/38/1/l02
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Lim;Almut Beige
  • 通讯作者:
    Almut Beige
Quantum-enhanced metrology without entanglement based on optical cavities with feedback
基于带反馈的光学腔的无纠缠量子增强计量
  • DOI:
    10.5220/0006141702230229
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. A. Clark;A. Stokes;M. M. Khan;Gangcheng Wang;Almut Beige
  • 通讯作者:
    Almut Beige
Non-ergodicity through quantum feedback
通过量子反馈实现非遍历性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. A. Clark;Fiona Torzewska;Ben Maybee;Almut Beige
  • 通讯作者:
    Almut Beige
Protecting subspaces by acting on the outside
通过作用于外部来保护子空间
Quantising one-dimensional electromagnetic fields in position space
量化位置空间中的一维电磁场
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Hodgson;J. Southall;R. Purdy;Almut Beige
  • 通讯作者:
    Almut Beige

Almut Beige的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Almut Beige', 18)}}的其他基金

Modelling Condensed Matter Systems with Quantum Gases in Optical Cavities
用光腔中的量子气体模拟凝聚态系统
  • 批准号:
    EP/H048901/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Research Grant
Cavity-mediated cooling using nanostructured surfaces
使用纳米结构表面进行腔介导冷却
  • 批准号:
    EP/E039863/1
  • 财政年份:
    2007
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Research Grant

相似海外基金

Building a 1D chain of Rydberg atoms via an optical nanofibre interface
通过光学纳米纤维接口构建一维里德伯原子链
  • 批准号:
    24K08289
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
  • 批准号:
    23K13046
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Correlation and Dynamics of Ultracold Atoms in Optical Tweezer Arrays
光镊阵列中超冷原子的相关性和动力学
  • 批准号:
    2308617
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Quantum Nonlinear Optics with Cold Atoms in Optical Lattices
光学晶格中冷原子的量子非线性光学
  • 批准号:
    546105-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Postdoctoral Fellowships
Robustness of Chern insulators in interacting ultracold atoms in optical lattices
陈绝缘体在光学晶格中相互作用的超冷原子中的鲁棒性
  • 批准号:
    574745-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Rydberg atoms interfaced with an optical nanofiber
里德伯原子与光学纳米纤维连接
  • 批准号:
    22K13986
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High bandwidth power supplies for optical pumping of francium atoms for atomic parity violation studies
用于钫原子光泵浦的高带宽电源,用于原子宇称违反研究
  • 批准号:
    SAPEQ-2021-00005
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Subatomic Physics Envelope - Research Tools and Instruments
Ultracold Atoms in a Quasicrystalline Optical Lattice
准晶光学晶格中的超冷原子
  • 批准号:
    2606554
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Studentship
Quantum Nonlinear Optics with Cold Atoms in Optical Lattices
光学晶格中冷原子的量子非线性光学
  • 批准号:
    546105-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Postdoctoral Fellowships
Spectroscopy and Quantum-State Manipulation of Excited Rb Atoms and Molecules Using Optical Lattices
使用光学晶格对激发的 Rb 原子和分子进行光谱学和量子态操纵
  • 批准号:
    2110049
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了