Nanoscale Microwave Sources Based on Planar Spin Oscillators for Integrating Wireless Communications on the Computing Platform
基于平面自旋振荡器的纳米级微波源,用于在计算平台上集成无线通信
基本信息
- 批准号:EP/E002501/1
- 负责人:
- 金额:$ 8.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past 30 years, the increase in performance of integrated circuits and the reduction in the cost of computers have been achieved through the miniaturisation of transistors and their denser integration on a semiconductor chip. This scaling down has been accompanied by a reduction in the area and pitch of interconnects to the point where today circuit speed is limited, not by transistors, but by the severe losses experienced when electrical signals travel through metal wires at high frequencies. To carry on enhancing system performance, semiconductor industry roadmaps envision replacing metal wires with wireless interconnects. Broadcasting signals in free space promises extremely high-speed communication channels that transmit data without attenuation and adaptive wireless networks that are secure and tolerant to hardware defects. Integrating communication capabilities at the chip level accelerates the convergence of computing and communication systems to ultimately enable all computers to communicate and all communication devices to compute. To implement this vision physicists must now conceive novel emitter and receiver devices directed towards making inter/intra-chip interconnects.We aim to generate microwaves by a process of 'inverse electron spin resonance' that we will demonstrate in hybrid semiconductor/ferromagnetic structures. The stray magnetic field emanating from ultra-small magnetic elements will thread a sheet of free electrons trapped at the interface between two semiconductors. We will apply an electrical current to this system to activate electron oscillations in the microscopically inhomogeneous magnetic field. An electron carries a tiny magnetic moment that aligns with a magnetic field in the same way as a compass needle aligns with the Earth magnetic field. The electron magnetic moment is therefore sensitive to the stray magnetic field emanating from a nano-magnet as the electron oscillates underneath it. The stray magnetic field vector component oriented in the plane of the semiconductor interface has constant amplitude and causes the electron magnetic moment to gyrate at constant speed, with the same precession motion as a spinning top. By contrast, the magnetic field vector component perpendicular to the plane oscillates at the frequency of the electron oscillator. When the precession frequency equals the oscillator frequency, the electron magnetic moment resonantly radiates microwave energy.We will combine precision lithography with thin film deposition techniques at the University of Bath to fabricate hybrid semiconductor/ferromagnetic structures hosting electron oscillators. We will activate these oscillators by applying a direct current to the semiconductor wire and will measure microwave emission spectra as a function of experimental and structural parameters. The quantum mechanical coupling of the oscillating magnetic moment to the electromagnetic field will give complete spectral information on the oscillator dynamics and will allow us to demonstrate a multiple frequency source broadcasting several communication channels simultaneously. We will investigate weakly coupled electron oscillators to enhance the coherence and power of microwaves at room temperature. We will broadcast wireless signals through airwaves or in a guided medium between two hybrid devices fabricated on the same semiconductor chip. Nanoscale wireless networks enhance the speed, security and cost-efficiency of computers, they facilitate communications with remote sensors that are increasingly used in industrial processes, health monitoring and military applications. A very attractive aspect of our proposal is that the Physics is material independent. As a result, our conclusions will hold for two-dimensional electron systems formed in carbon sheets (graphene), semiconductor quantum wells or the surface of liquid helium when subjected to the above electric and magnetic fields.
在过去的30年里,集成电路性能的提高和计算机成本的降低是通过晶体管的小型化和在半导体芯片上更密集的集成来实现的。这种缩小伴随着互连的面积和间距的减小,到了今天限制电路速度的地步,不是晶体管,而是电信号在高频下通过金属导线时所经历的严重损耗。为了继续提高系统性能,半导体行业路线图设想用无线互连取代金属线。在自由空间中广播信号承诺了极高速的通信通道,传输数据时不会衰减,自适应无线网络是安全和容忍硬件缺陷的。在芯片级集成通信能力加速了计算和通信系统的融合,最终使所有计算机都能通信,所有通信设备都能计算。为了实现这一愿景,物理学家现在必须构思出新的发射器和接收器设备,用于制造芯片间/芯片内互连。我们的目标是通过“逆电子自旋共振”过程产生微波,我们将在混合半导体/铁磁结构中演示。从超小型磁性元件发出的杂散磁场将在两个半导体之间的界面上缠绕一层自由电子。我们将在这个系统上施加电流,在微观上不均匀的磁场中激活电子振荡。电子携带一个微小的磁矩,这个磁矩与磁场对齐,就像指南针与地球磁场对齐一样。因此,当电子在纳米磁铁下面振荡时,电子的磁矩对纳米磁铁发出的杂散磁场很敏感。在半导体界面平面上取向的杂散磁场矢量分量具有恒定的幅值,使电子磁矩以恒定的速度旋转,其进动运动与旋转陀螺相同。相反,垂直于平面的磁场矢量分量以电子振荡器的频率振荡。当进动频率等于振子频率时,电子磁矩共振辐射微波能量。我们将结合巴斯大学的精密光刻技术和薄膜沉积技术来制造容纳电子振荡器的混合半导体/铁磁结构。我们将通过对半导体线施加直流电来激活这些振荡器,并将测量微波发射光谱作为实验和结构参数的函数。振荡磁矩与电磁场的量子力学耦合将给出振荡器动力学的完整频谱信息,并允许我们演示多个频率源同时广播多个通信频道。我们将研究弱耦合电子振荡器,以提高微波在室温下的相干性和功率。我们将在同一半导体芯片上制造的两个混合器件之间通过无线电波或引导介质传播无线信号。纳米级无线网络提高了计算机的速度、安全性和成本效益,促进了与远程传感器的通信,这些传感器越来越多地用于工业过程、健康监测和军事应用。我们的建议有一个非常吸引人的方面,那就是物理学是独立于物质的。因此,我们的结论将适用于在上述电场和磁场作用下在碳片(石墨烯)、半导体量子阱或液氦表面形成的二维电子系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
POINT CONTACT SPECTROSCOPY OF MAGNETIC EDGE STATES
磁边缘态的点接触光谱
- DOI:10.1142/s0217979207043105
- 发表时间:2012
- 期刊:
- 影响因子:1.7
- 作者:LAMBERT N
- 通讯作者:LAMBERT N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed Henini其他文献
量子ドット-2次元電子結合系のサイクロトロン共鳴II
量子点回旋共振-二维电子耦合系统II
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
竹端寛治;今中康貴;高増正;Mohamed Henini;Lawrence Eave - 通讯作者:
Lawrence Eave
Ybドープ2次元電子系の強磁場電気伝導特性
掺镱二维电子体系的强磁场导电特性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
竹端寛治;今中康貴;高増正;Mohamed Henini;Lawrence Eave;M. Ichioka et. al;A. Yamada et. al;H. Adachi et. al;M. Oka et. al;海津利行 - 通讯作者:
海津利行
Semiconductors: Data Handbook: Otfried Madelung (Ed.); Springer, ISBN 3-540-40488-0
半导体:数据手册:Otfried Madelung(主编);
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:2.2
- 作者:
Mohamed Henini - 通讯作者:
Mohamed Henini
Linear and nonlinear optical investigations of polyvinyl chloride modified Lasub2/subOsub3/sub nanocomposite films
聚氯乙烯修饰的lasub2/suboSub3/sub纳米复合膜的线性和非线性光学研究
- DOI:
10.1016/j.rinp.2024.107456 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Sultan Alhassan;Khulaif Alshammari;Majed Alshammari;Turki Alotaibi;Alhulw H. Alshammari;Ali Alhamazani;Mohamed Henini;Taha Abdel Mohaymen Taha - 通讯作者:
Taha Abdel Mohaymen Taha
Comparative Analysis of Temperature-Dependent Characteristics of GaAs and InGaAs Quantum Wire-Based Heterostructures
- DOI:
10.1007/s11664-025-11841-7 - 发表时间:
2025-03-08 - 期刊:
- 影响因子:2.500
- 作者:
Leila Mezhoud;Nouredine Sengouga;Amjad Meftah;Noor Alhuda Al Saqri;Mohamed Henini - 通讯作者:
Mohamed Henini
Mohamed Henini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohamed Henini', 18)}}的其他基金
相似海外基金
Photonic sources of pristine optical and microwave carriers
原始光学和微波载体的光子源
- 批准号:
RGPIN-2020-04494 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
Discovery Grants Program - Individual
Photonic sources of pristine optical and microwave carriers
原始光学和微波载体的光子源
- 批准号:
RGPIN-2020-04494 - 财政年份:2021
- 资助金额:
$ 8.31万 - 项目类别:
Discovery Grants Program - Individual
Photonic sources of pristine optical and microwave carriers
原始光学和微波载体的光子源
- 批准号:
RGPIN-2020-04494 - 财政年份:2020
- 资助金额:
$ 8.31万 - 项目类别:
Discovery Grants Program - Individual
Controlling microwave radiation from sources by design of their environment
通过环境设计控制源的微波辐射
- 批准号:
2254980 - 财政年份:2019
- 资助金额:
$ 8.31万 - 项目类别:
Studentship
Current-driven magnetic sources at microwave frequency
微波频率电流驱动磁源
- 批准号:
1708016 - 财政年份:2017
- 资助金额:
$ 8.31万 - 项目类别:
Standard Grant
Microwave vacuum drying system with multiple sources
多源微波真空干燥系统
- 批准号:
418078-2011 - 财政年份:2011
- 资助金额:
$ 8.31万 - 项目类别:
Engage Grants Program
Nanoscale Microwave Sources Based on Planar Spin Oscillators for Integrating Wireless Communications on the Computing Platform
基于平面自旋振荡器的纳米级微波源,用于在计算平台上集成无线通信
- 批准号:
EP/E002390/1 - 财政年份:2006
- 资助金额:
$ 8.31万 - 项目类别:
Research Grant
Nanoscale Microwave Sources Based on Planar Spin Oscillators for Integrating Wireless Communications on the Computing Platform
基于平面自旋振荡器的纳米级微波源,用于在计算平台上集成无线通信
- 批准号:
EP/E001688/1 - 财政年份:2006
- 资助金额:
$ 8.31万 - 项目类别:
Research Grant
Application of Femtosecond Light Sources to Generation of Low Noise Microwave Signals
飞秒光源在产生低噪声微波信号中的应用
- 批准号:
LP0560416 - 财政年份:2005
- 资助金额:
$ 8.31万 - 项目类别:
Linkage Projects
NSF/DOE Partnership in Basic Plasma Science and Engineering: Scaling of Microwave Plasma Sources to Small Dimensions
NSF/DOE 基础等离子体科学与工程合作:微波等离子体源缩小尺寸
- 批准号:
0078480 - 财政年份:2000
- 资助金额:
$ 8.31万 - 项目类别:
Continuing Grant