Variational methods in Bayesian inference

贝叶斯推理中的变分方法

基本信息

  • 批准号:
    EP/E009425/1
  • 负责人:
  • 金额:
    $ 33.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Bayesian inference, in its various forms, is one of the core techniques of modern statistics. It is an important method to extract information about complex stochastic systems and their parameters and has successfully been used in many different application areas such as medical trial analysis, bioinformatics, forensic analysis or archealogy. It has also close connections to related fields such as image processing, speech recognition, and neural networks. Research into methods of Bayesian inference is therefore of significant topical interest.The practical implementation of Bayesian inference techniques rests on the ability to calculate high-dimensional integrals. Powerful methods have been developed for this purpose, in particular Monte-Carlo integration schemes, which are stochastic algorithms well suited for numerical computations. Although these methods are flexible and widely applicable, there are many situations where they suffer from significant limitations, e.g., regarding their accuracy and computational efficiency. In recent years, the so-called variational approach has received growing interest as a promising alternative. It is a deterministic approximation scheme that, under certain circumstances, allows to carry out at least some parts of the calculations analytically. It is thus complementary to Monte-Carlo methods and could present advantages in areas where the latter perform badly. Nevertheless, many questions about this approach still need to be explored, for example regarding its precision and reliability, or the development and optimisation of efficient and flexible algorithms.Within this context, this project in its initial stage intends to obtain an overview of the existing variational techniques, their strengths, weaknesses, and areas of applicability, and to compare them to the alternative approaches. In the main stage, the project aims at developing new variational methodology, for example, by applying techniques used in related areas (e.g., machine learning), combining variational and Monte Carlo methods, or improving and extending existing approaches. The results of this work are expected to be relevant not only to the ongoing theoretical research in this field, but also to the practical application and use of Bayesian methods, e.g., as a tool for data analysis.
贝叶斯推理是现代统计学的核心技术之一,其形式多种多样。它是提取复杂随机系统及其参数信息的一种重要方法,已成功地应用于许多不同的应用领域,如医学试验分析,生物信息学,法医分析或考古学。它还与图像处理、语音识别和神经网络等相关领域有着密切的联系。因此,贝叶斯推理方法的研究具有重要的现实意义,贝叶斯推理技术的实际实现依赖于计算高维积分的能力。为此目的,已经开发了强大的方法,特别是蒙特-卡罗积分方案,这是非常适合于数值计算的随机算法。虽然这些方法是灵活的和广泛适用的,但在许多情况下,它们受到很大的限制,例如,关于它们的准确性和计算效率。近年来,所谓的变分方法作为一种有前途的替代方法受到越来越多的关注。它是一种确定性近似方案,在某些情况下,允许分析地执行至少部分计算。因此,它是蒙特-卡罗方法的补充,在后者表现不佳的领域可能具有优势。尽管如此,这种方法仍然需要探讨的许多问题,例如关于其精度和可靠性,或开发和优化的高效和灵活的algorithm.Within这方面,该项目在其初始阶段打算获得现有的变分技术的概述,其优点,缺点和适用范围,并将它们与替代方法进行比较。在主要阶段,该项目旨在开发新的变分方法,例如,通过应用相关领域使用的技术(例如,机器学习),结合变分和蒙特卡罗方法,或改进和扩展现有的方法。预计这项工作的结果不仅与该领域正在进行的理论研究有关,而且与贝叶斯方法的实际应用和使用有关,例如,作为数据分析的工具。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mean field inference for the Dirichlet process mixture model
狄利克雷过程混合模型的平均场推断
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oliver Zobay其他文献

Phase transition of trapped interacting Bose gases and the renormalization group
被捕获的相互作用玻色气体和重正化群的相变
  • DOI:
    10.1103/physreva.69.043614
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    G. Metikas;G. Metikas;Oliver Zobay;Gernot Alber
  • 通讯作者:
    Gernot Alber
ON B AYESIAN N ONPARAMETRICS
贝叶斯非参数
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isadora Antoniano Villalobos;Julyan Arbel;R. Argiento;Eric Barat;Federico Bassetti;Abhishek Bhattacharya;Anirban Bhattacharya;Pier Giovanni Bissiri;N. Bochkina;Eunice Campir´an;François Caron;Alessandro Carta;Ismael Castillo;A. Cerquetti;J. Ciera;Enkeleda Cuko;P. Blasi;Maria De Iorio;Jos´e C.S. de Miranda;D. Dey;Emanuele Dolera;Chang Dorea;Arnaud Doucet;D. Dunson;O. Dakkak;Michael Escobar;Stefano Favaro;Marian Farah;Giorgio Ferrari;Emily B. Fox;Kassandra M. Fronczyk;Mauro Gasparini;Alan Gelfand;Z. Ghahramani;S. Ghosal;D. Giannikis;Peter Green;Jim Griffin;A. Guglielmi;M. Guindani;G. Hadjicharalambous;Timothy Hanson;Spyridon J. Hatjispyros;Daniel Heinz;Ricardo Henao;G. Hermansen;Amy H. Herring;Nils Lid Hjort;Peter Hoff;Chris C. Holmes;Susan Holmes;Silvano Holzer;Zhaowei Hua;Sam Hui;Rosalba Ignaccolo;D. Imparato;Lancelot F. James;Alejandro Jara;Michael I. Jordan;Arbel Julyan;M. Kalli;G. Karabatsos;Dohyun Kim;Gwangsu Kim;Yong;B. Kleijn;B. Knapik;M. Kolossiatis;W. Kruijer;L. Ladelli;Heng Lian;A. Lijoi;A. Lo;Claudio Macci;S. MacEachern;Andrea Martinelli;Takashi Matsumoto;Karla Medina;Silvia Montagna;Pietro Muliere;Peter M¨uller;Consuelo Nava;L. Nieto;Mexico Itam;Bernardo Nipoti;Andriy Norets;A. Ongaro;Peter Orbanz;Antonio A. Ortiz Barranon;Kosuke Ota;O. Papaspiliopoulos;G. Peccati;Sonia Petrone;Giovanni Pistone;M. J. Polidoro;Cecilia Prosdocimi;Igor Pr¨unster;Anthony P. Quinn;Fernando A. Quintana;Sandra Ramos;E. Regazzini;Eva Riccomagno;Gareth Roberts;Abel Rodriguez;Carlos E. Rodriguez;Alex Rojas;J. Rousseau;Daniel M. Roy;Matteo Ruggiero;B. Scarpa;B. Shahbaba;Dario Spanò;Mark Steel;Erik B. Sudderth;Matthew A. Taddy;Y. W. Teh;Aleksey Tetenov Collegio;Italy Carlo Alberto;L. Trippa;Stephen G. Walker;A. Wedlin;Sinead Williamson;Fei Xiang;Hao Wu;Oliver Zobay
  • 通讯作者:
    Oliver Zobay

Oliver Zobay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Continuing Grant
Bayesian Methods for Sample Size Re-estimation
样本量重新估计的贝叶斯方法
  • 批准号:
    2884699
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Studentship
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Studentship
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
Bayesian genetic association analysis of all rare diseases in the Kids First cohort
Kids First 队列中所有罕见疾病的贝叶斯遗传关联分析
  • 批准号:
    10643463
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
  • 批准号:
    10714882
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
Computational methods for Bayesian clustering
贝叶斯聚类的计算方法
  • 批准号:
    2884420
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了