Molecular Dynamics and Reactivity in Complex and Confined Fluids
复杂和受限流体中的分子动力学和反应性
基本信息
- 批准号:EP/E010466/1
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Of the three states of matter liquids are the most difficult to deal with. The molecules interact with one another all the time (unlike in gases) and yet possess no long range order, and move about all the time (unlike in solids). In the past this has made them hard for scientists to study. As a result much early quantitative research focussed on the gas phase, which is a problem for chemistry and biology, where most important processes actually happen in liquids. Fortunately our understanding of some common liquids has moved forward dramatically in the past few years. This is firstly because of the development of new experimental methods which make it possible to directly observe molecular motion in the liquid state (a technologically significant feat, since these dynamics occur in times of less than one million millionth of a second) and secondly very fast and efficient computer programs make it possible to model liquid dynamics accurately. However, many of the liquids that are most important in chemistry and biology do not behave exactly like the common liquids usually studied. For example some liquids spontaneously form large (hundreds of molecules) structures (the living cell being the most imporant, and most complex, example) or change their properties as a result of some external perturbation. Such liquids, called 'complex fluids', are of great importance, being widespread in nature and in foodstuffs (margarine for example) and having important technological applications (liquid crystals are another example). In the research program described here we will extend the methods used successfully to describe common liquids to investigate for the first time the dynamics of this important class of 'complex' fluids. This will contribute to our understanding of chemical processes in materials and life sciences.
在物质的三种状态中,液体是最难处理的。分子之间总是相互作用(不像气体),但不具有长程有序性,而且总是在运动(不像固体)。在过去,这使得科学家很难研究它们。因此,许多早期的定量研究集中在气相,这是化学和生物学的一个问题,其中大多数重要的过程实际上发生在液体中。幸运的是,在过去的几年里,我们对一些常见液体的了解取得了巨大的进步。这首先是因为新的实验方法的发展,使人们有可能直接观察分子在液体状态下的运动(一个技术上的重大成就,因为这些动力学发生的时间小于百万分之一秒),其次是非常快速和有效的计算机程序使人们有可能精确地模拟液体动力学。然而,许多在化学和生物学中最重要的液体并不完全像通常研究的普通液体那样表现。例如,一些液体自发地形成大的(数百个分子)结构(活细胞是最重要的,最复杂的,例如)或改变它们的性质作为一些外部扰动的结果。这种被称为“复合流体”的液体非常重要,广泛存在于自然界和食品中(例如人造黄油),并具有重要的技术应用(液晶是另一个例子)。在这里描述的研究计划中,我们将扩展成功用于描述常见液体的方法,以首次研究这类重要的“复杂”流体的动力学。这将有助于我们理解材料和生命科学中的化学过程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydroxide Hydrogen Bonding: Probing the Solvation Structure through Ultrafast Time Domain Raman Spectroscopy.
- DOI:10.1021/jz200350q
- 发表时间:2011-04
- 期刊:
- 影响因子:0
- 作者:I. Heisler;K. Mazur;S. Meech
- 通讯作者:I. Heisler;K. Mazur;S. Meech
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Meech其他文献
Stephen Meech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Meech', 18)}}的其他基金
Femtosecond to Millisecond Photo-dynamics of Third Generation Fluorescent Proteins
第三代荧光蛋白的飞秒至毫秒光动力学
- 批准号:
EP/X011410/1 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Coherent Chemistry: Ultrabroadband Two-dimensional Electronic Spectroscopy
相干化学:超宽带二维电子光谱
- 批准号:
EP/V00817X/1 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Switching On and Powering Molecular Machines: Ultrafast Dynamics of Photoswitches
分子机器的开启和供电:光电开关的超快动力学
- 批准号:
EP/R042357/1 - 财政年份:2018
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Multidimensional Spectroscopy Development for the Study of Energy Materials
用于能源材料研究的多维光谱学发展
- 批准号:
EP/P01111X/1 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Structural Dynamics in LOV Domain Photosensor Proteins
LOV 结构域光传感器蛋白的结构动力学
- 批准号:
EP/N033647/1 - 财政年份:2016
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Ultrafast Dynamics at Protein Interfaces
蛋白质界面的超快动力学
- 批准号:
EP/M001997/1 - 财政年份:2014
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
International Collaboration in Chemistry: BLUF Domain blue light photosensors - a paradigm for optogenetics
国际化学合作:BLUF 域蓝光光电传感器 - 光遗传学的范例
- 批准号:
EP/K000764/1 - 财政年份:2013
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Ultrafast Multidimensional Spectroscopy for Photomolecular Science
用于光分子科学的超快多维光谱
- 批准号:
EP/J009148/1 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
Photodynamics in Second Generation Fluorescent Proteins
第二代荧光蛋白的光动力学
- 批准号:
EP/H025715/1 - 财政年份:2010
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
International Collaboration in Chemistry: Mechanism of Operation of the BLUF Domain - Blue Light Sensitive Biosensors
国际化学合作:BLUF 结构域的运作机制 - 蓝光敏感生物传感器
- 批准号:
EP/G002916/1 - 财政年份:2008
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Prediction model of the reactivity of supplementry cementitious materials based on molecular dynamics
基于分子动力学的补充胶凝材料反应活性预测模型
- 批准号:
23KJ0057 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unraveling the dynamics that enable unusual heme enzyme reactivity
揭示血红素酶异常反应的动力学
- 批准号:
10501336 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Unraveling the dynamics that enable unusual heme enzyme reactivity
揭示血红素酶异常反应的动力学
- 批准号:
10810351 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Unraveling the dynamics that enable unusual heme enzyme reactivity
揭示血红素酶异常反应的动力学
- 批准号:
10670417 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Unraveling the dynamics that enable unusual heme enzyme reactivity
揭示血红素酶异常反应的动力学
- 批准号:
10798604 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
CAS-MNP: Molecular Probing Surface Reactivity Dynamics of Native versus Photo-Oxidized Microplastics and Nanoplastics in Environmental Aqueous Media
CAS-MNP:环境水介质中天然与光氧化微塑料和纳米塑料的分子探测表面反应动力学
- 批准号:
2109097 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
Cavity-Controlled Vibrational Dynamics and Chemical Reactivity with Quantum Strong Coupling
具有量子强耦合的腔控制振动动力学和化学反应性
- 批准号:
1955026 - 财政年份:2020
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
Probing the Solution-Phase Dynamics of l3-Iodanes and Relation to Reactivity
探讨 13-碘烷的溶液相动力学及其与反应性的关系
- 批准号:
1856705 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
Quantum-State-Selected Ion-Molecule Reaction Dynamics: Effects of Translational, Rotational, Vibrational, Spin-Orbit, and Electronic States on Chemical Reactivity
量子态选择离子分子反应动力学:平移、旋转、振动、自旋轨道和电子态对化学反应性的影响
- 批准号:
1763319 - 财政年份:2018
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
From nature to nano: structure, dynamics and reactivity of DNA three-way junctions
从自然到纳米:DNA 三向连接的结构、动力学和反应性
- 批准号:
EP/L027003/1 - 财政年份:2014
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant