Femtosecond to Millisecond Photo-dynamics of Third Generation Fluorescent Proteins
第三代荧光蛋白的飞秒至毫秒光动力学
基本信息
- 批准号:EP/X011410/1
- 负责人:
- 金额:$ 57.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optical microscopy has been central to biology for centuries. In recent decades fluorescence microscopy has developed as an exceptionally sensitive and universally employed tool in the life sciences. Its power was dramatically enhanced in the 1990s through the discovery of the green fluorescent protein (GFP). This allowed a fluorescent label (GFP) to be irreversibly and selectively expressed attached to a specific target protein, permitting the location, dynamics and function of that protein to be probed in a living cell. More recently, photoswitchable fluorescent proteins were discovered. These fluorescent proteins can be reversibly switched between fluorescent (on) and nonfluorescent (off) states by light. This property allowed the development of super-resolution fluorescence bioimaging, which improved the spatial resolution of fluorescence microscopy by more than 10 times, allowing details much smaller than the wavelength of light to be observed in living systems. However, applications of photoswitchable proteins are limited because the light used to generate fluorescence from their 'on' states also switches the proteins 'off', causing the image to fade. A higher level of control is offered by the recently discovered third generation fluorescent proteins (3G FPs), which have three states, an off-state and a switching state in thermal equilibrium with an on-state. These three states can be independently excited, so switching off is decoupled from observation from the on-state. This development will lead to enhanced super-resolution imaging, and has the potential for the development of new multicolour imaging methods. However, the mechanism connecting these states is completely unknown.Our experiments will allow us to probe in detail the effects of light on all three states of 3G FPs. We will measure the rates of the interconversion between the three states as well as the structural changes that accompany them. Since the fastest of the interconversion reactions are extremely fast (thousand-billionths of a second) we will use the tools of ultrafast laser spectroscopy to make our observations. Our ultrafast experiments probe populations of reactant, intermediate and product states through their absorption spectroscopy, while their structures are probed through ultrafast vibrational spectroscopy. These measurements will lead to a detailed picture of the photoconversion mechanism in 3G FPs. Once the mechanism is established, we will apply the tools of chemical biology to make mutations in key residues that will (i) test our ideas of the mechanism and (ii) optimise the photoswitching rate, and thus yield superior 3G FPs for bioimaging.Photoactive proteins such as FPs offer a unique opportunity to observe protein structure evolution in real time. In particular time resolved vibrational spectroscopy yields structural data from femtoseconds out to milliseconds. This information has great importance, as it can be compared with the results of computational calculations and independent experiments on protein structural dynamics. Together this will yield the most detailed insights yet into the dynamics of proteins undergoing their function, which in turn enhances our understanding of the nature of drug-protein interactions.
几个世纪以来,光学显微镜一直是生物学的核心。近几十年来,荧光显微镜已经发展成为生命科学中一种特别灵敏和普遍使用的工具。由于绿色荧光蛋白(GFP)的发现,它的力量在20世纪90年代得到了显著增强。这使得荧光标记(GFP)可以不可逆地和选择性地附着在特定的目标蛋白上,从而允许在活细胞中探测该蛋白的位置、动态和功能。最近,人们发现了可光开关的荧光蛋白。这些荧光蛋白可以用光可逆地在荧光状态(开)和非荧光状态(关)之间切换。这一特性使超分辨率荧光生物成像的发展成为可能,它将荧光显微镜的空间分辨率提高了10倍以上,使人们能够在生命系统中观察到比光波长小得多的细节。然而,可光开关蛋白质的应用受到限制,因为用于从其打开状态产生荧光的光也会将蛋白质关闭,导致图像褪色。最近发现的第三代荧光蛋白(3G FP)提供了更高水平的控制,它们有三种状态,即关闭状态和处于热平衡与开启状态的开关状态。这三种状态可以独立地被激发,因此关断与观察与开启状态是分离的。这一发展将导致增强的超分辨率成像,并具有开发新的多色成像方法的潜力。然而,连接这些态的机制是完全未知的。我们的实验将使我们能够详细地探索光对3G FP的所有三个态的影响。我们将衡量这三个国家之间相互转换的速度以及随之而来的结构性变化。由于最快的相互转化反应是非常快的(千亿分之一秒),我们将使用超快激光光谱学的工具来进行观察。我们的超快实验通过吸收光谱探测反应物、中间态和产物态的群体,同时通过超快振动光谱探测它们的结构。这些测量将导致对3G FP的光转换机制的详细描述。一旦机制建立,我们将应用化学生物学的工具对关键残基进行突变,这将(I)测试我们对机制的想法,(Ii)优化光开关速率,从而产生优越的3G FP用于生物成像。FP等光活性蛋白质提供了一个实时观察蛋白质结构演变的独特机会。特别是,时间分辨振动光谱学产生了从飞秒到毫秒的结构数据。这一信息非常重要,因为它可以与蛋白质结构动力学的计算计算和独立实验的结果进行比较。总而言之,这将产生迄今为止对经历其功能的蛋白质动态的最详细的洞察,这反过来又增强了我们对药物-蛋白质相互作用的本质的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Meech其他文献
Stephen Meech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Meech', 18)}}的其他基金
Coherent Chemistry: Ultrabroadband Two-dimensional Electronic Spectroscopy
相干化学:超宽带二维电子光谱
- 批准号:
EP/V00817X/1 - 财政年份:2021
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Switching On and Powering Molecular Machines: Ultrafast Dynamics of Photoswitches
分子机器的开启和供电:光电开关的超快动力学
- 批准号:
EP/R042357/1 - 财政年份:2018
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Multidimensional Spectroscopy Development for the Study of Energy Materials
用于能源材料研究的多维光谱学发展
- 批准号:
EP/P01111X/1 - 财政年份:2017
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Structural Dynamics in LOV Domain Photosensor Proteins
LOV 结构域光传感器蛋白的结构动力学
- 批准号:
EP/N033647/1 - 财政年份:2016
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Ultrafast Dynamics at Protein Interfaces
蛋白质界面的超快动力学
- 批准号:
EP/M001997/1 - 财政年份:2014
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
International Collaboration in Chemistry: BLUF Domain blue light photosensors - a paradigm for optogenetics
国际化学合作:BLUF 域蓝光光电传感器 - 光遗传学的范例
- 批准号:
EP/K000764/1 - 财政年份:2013
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Ultrafast Multidimensional Spectroscopy for Photomolecular Science
用于光分子科学的超快多维光谱
- 批准号:
EP/J009148/1 - 财政年份:2012
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Photodynamics in Second Generation Fluorescent Proteins
第二代荧光蛋白的光动力学
- 批准号:
EP/H025715/1 - 财政年份:2010
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
International Collaboration in Chemistry: Mechanism of Operation of the BLUF Domain - Blue Light Sensitive Biosensors
国际化学合作:BLUF 结构域的运作机制 - 蓝光敏感生物传感器
- 批准号:
EP/G002916/1 - 财政年份:2008
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
Molecular Dynamics and Reactivity in Complex and Confined Fluids
复杂和受限流体中的分子动力学和反应性
- 批准号:
EP/E010466/1 - 财政年份:2007
- 资助金额:
$ 57.85万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234921 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Exploring the Structure near Black Holes using Millisecond Timing, Spectral X-Ray Observations, and Advanced Data Analysis Techniques
使用毫秒定时、光谱 X 射线观测和高级数据分析技术探索黑洞附近的结构
- 批准号:
22KJ1431 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234920 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234919 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Cerebellar and cerebro-cerebellar networks across the millisecond and circadian timescales
跨毫秒和昼夜节律时间尺度的小脑和脑小脑网络
- 批准号:
RGPIN-2021-04020 - 财政年份:2022
- 资助金额:
$ 57.85万 - 项目类别:
Discovery Grants Program - Individual
Compact Binaries and the Origin of Millisecond Pulsars
致密双星和毫秒脉冲星的起源
- 批准号:
2205550 - 财政年份:2022
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Instrumentation and methods development for millisecond time-resolved studies of protein dynamics using quenching crystallography
使用淬灭晶体学进行毫秒时间分辨蛋白质动力学研究的仪器和方法开发
- 批准号:
2210041 - 财政年份:2022
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Cerebellar and cerebro-cerebellar networks across the millisecond and circadian timescales
跨毫秒和昼夜节律时间尺度的小脑和脑小脑网络
- 批准号:
RGPIN-2021-04020 - 财政年份:2021
- 资助金额:
$ 57.85万 - 项目类别:
Discovery Grants Program - Individual
Development of sub-millisecond XRD measurement technique under combined dynamic environment using DAC
使用 DAC 开发组合动态环境下的亚毫秒 XRD 测量技术
- 批准号:
21K03711 - 财政年份:2021
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tools for live-cell imaging in the millisecond regime using Electrically Tunable Lenses
使用电可调镜头在毫秒范围内进行活细胞成像的工具
- 批准号:
2414130 - 财政年份:2020
- 资助金额:
$ 57.85万 - 项目类别:
Studentship














{{item.name}}会员




