Towards More Effective Multi-objective Meta-Heuristics to Solve Complex Combinatorial Problems

迈向更有效的多目标元启发式方法来解决复杂的组合问题

基本信息

  • 批准号:
    EP/E019781/1
  • 负责人:
  • 金额:
    $ 26.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

This research project proposes the investigation of a number of challenging ideas in the field of multi-objective combinatorial search. Most of the research in this area has been based on recycling knowledge acquired from research on the single-objective case and this has inspired the extension of many single-objective techniques to their multi-objective variants. Many of these are extensions from evolutionary techniques such as genetic algorithms, evolutionary strategies, particle swarm optimisation and others. There are some extensions of other meta-heuristics such as tabu search and simulated annealing to multi-objective variants. Evolutionary approaches have received most of the attention in multi-objective heuristic search but I believe that a wider range of meta-heuristic techniques should be investigated. The research themes proposed here represent a considerable shift in emphasis. Specifically, the aim is to conceive more effective multi-objective meta-heuristics to tackle complex combinatorial problems in a more effective and efficient manner than the current state of the art is capable of. This proposal aims to re-think the design of multi-objective meta-heuristics by developing them within the multi-objective paradigm instead of modifying known single-objective approaches.
本研究项目提出了多目标组合搜索领域中一些具有挑战性的思想的研究。该领域的大多数研究都是基于对单目标案例研究中获得的知识的回收,这激发了许多单目标技术向其多目标变体的扩展。其中许多是进化技术的扩展,如遗传算法、进化策略、粒子群优化等。将禁忌搜索和模拟退火等元启发式算法扩展到多目标变量。进化方法在多目标启发式搜索中受到了大多数关注,但我认为应该研究更广泛的元启发式技术。这里提出的研究主题代表了一个相当大的重点转变。具体来说,目标是构思更有效的多目标元启发式方法,以比当前技术水平更有效和高效的方式解决复杂的组合问题。本文旨在重新思考多目标元启发式的设计,在多目标范式中发展它们,而不是修改已知的单目标方法。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel Problem Solving from Nature, PPSN XI
自然并行问题解决,PPSN XI
  • DOI:
    10.1007/978-3-642-15844-5_39
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reynolds A
  • 通讯作者:
    Reynolds A
Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems
  • DOI:
    10.1007/s10732-012-9198-2
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    R. Qu;Ying Xu;J. P. Castro;Dario Landa Silva
  • 通讯作者:
    R. Qu;Ying Xu;J. P. Castro;Dario Landa Silva
Evolutionary Multi-Criterion Optimization - 5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedings
进化多标准优化 - 第五届国际会议,EMO 2009,法国南特,2009 年 4 月 7-10 日。会议记录
  • DOI:
    10.1007/978-3-642-01020-0_21
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Le K
  • 通讯作者:
    Le K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dario Landa-Silva其他文献

Franz Rothlauf: Design of Modern Heuristics
Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows
  • DOI:
    10.1007/s13676-017-0115-6
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Timothy Curtois;Dario Landa-Silva;Yi Qu;Wasakorn Laesanklang
  • 通讯作者:
    Wasakorn Laesanklang

Dario Landa-Silva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Towards more Natural, Intelligent, and Effective Robotic Grasp and Manipulations
实现更自然、智能、有效的机器人抓取和操作
  • 批准号:
    RGPIN-2018-06253
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Safer and More Effective CART Cell Therapy Through the Modulation of Myeloid Cytokines
通过调节骨髓细胞因子实现更安全、更有效的 CART 细胞疗法
  • 批准号:
    10538587
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
Towards Safer and More Effective CART Cell Therapy Through the Modulation of Myeloid Cytokines
通过调节骨髓细胞因子实现更安全、更有效的 CART 细胞疗法
  • 批准号:
    10340529
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
Towards Safer and More Effective CART Cell Therapy Through the Modulation of Myeloid Cytokines
通过调节骨髓细胞因子实现更安全、更有效的 CART 细胞疗法
  • 批准号:
    10867998
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
Towards more Natural, Intelligent, and Effective Robotic Grasp and Manipulations
实现更自然、智能、有效的机器人抓取和操作
  • 批准号:
    RGPIN-2018-06253
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more Natural, Intelligent, and Effective Robotic Grasp and Manipulations
实现更自然、智能、有效的机器人抓取和操作
  • 批准号:
    RGPIN-2018-06253
  • 财政年份:
    2020
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more Effective Working Memory Training for Older Adults
为老年人提供更有效的工作记忆训练
  • 批准号:
    2449589
  • 财政年份:
    2020
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Studentship
Towards more Natural, Intelligent, and Effective Robotic Grasp and Manipulations
实现更自然、智能、有效的机器人抓取和操作
  • 批准号:
    RGPIN-2018-06253
  • 财政年份:
    2019
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more Natural, Intelligent, and Effective Robotic Grasp and Manipulations
实现更自然、智能、有效的机器人抓取和操作
  • 批准号:
    RGPIN-2018-06253
  • 财政年份:
    2018
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Discovery Grants Program - Individual
Diagnostic innovation and livestock (DIAL): towards more effective and sustainable applications of antibiotics in livestock farming
诊断创新和牲畜(DIAL):在畜牧业中更有效和可持续地应用抗生素
  • 批准号:
    ES/P008194/1
  • 财政年份:
    2017
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了