The Linchpin Strategy in the Array Synthesis of Diverse Bioactive Ligand Scaffolds

多种生物活性配体支架阵列合成的关键策略

基本信息

  • 批准号:
    EP/E020712/1
  • 负责人:
  • 金额:
    $ 75.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The discovery of new drugs to treat diseases afflicting modern society is a huge challenge for chemists. For every drug that enters clinical usage, it is necessary to make and test around 10,000 candidate compounds, and total costs for the discovery programme can approach 500 million. The pressure to deliver new drugs in a cheaper, faster and more efficient manner means that chemists have to be able to deliver large numbers of drug candidates in an efficient manner. One of the techniques used to do this is so-called array chemistry, where compounds are prepared in a matrix form: for example, eight compounds of type A are simultaneously reacted with eight compounds of type B to deliver sixty four new compounds. Such an approach lends itself to automation and much of this chemistry can now be delivered efficiently and automatically by robotic synthesisers. However, there is a drawback to this array approach as it stands. Imagine the interaction of the drug molecule with its target receptor or enzyme as being like a key (the drug) fitting in a lock (the receptor/enzyme). At the start of the drug discovery process, we have the lock but no key. The chemist, like a locksmith, would take a backbone (a blank key) and decorate the backbone with different substituents (corresponding to the different arrangements of teeth on the key which code for the lock). We can therefore see that both the backbone AND the pattern are important - it is no good making hundreds or thousands of Yale keys if the lock is a Chubb design. However, until now most chemical methods for the array synthesis of large numbers of compounds as potential keys only allow chemists to work on one type of backbone at a time. It would clearly be more efficient to have a method that allows us to simultaneously vary the type of keys we make whilst still retaining the ability to alter the patterns of the teeth on the key, which will allow them to selectively interact with the desired lock . How can we achieve this?The work undertaken here will develop a new method for the synthesis of arrays, based on the use of linchpins . These are small molecules which will allow us to join together two, three or four different commercially available components in a controlled manner. Once the components are linked together, we can change the shape of the backbone by getting the individual components to react together to form ring-shaped molecules. For example, if we joined three components A, B and C together on the linchpin, we could leave the backbone alone, or we could cyclise it by joining A to B, A to C, or B to C. Each of these four possible options will have a very different shape, and hence gives us different backbones to our keys for drug discovery, as well as still being able to vary the nature of A, B and C (ie the teeth of the key). The challenge in all of this is developing methods for addition of the various components to the linchpin which are mild enough not to destroy the groups that we will use to join the components together in the cyclisation, and this is what will be studied in the current grant.
发现治疗现代社会疾病的新药对化学家来说是一个巨大的挑战。对于每一种进入临床使用的药物,都需要制造和测试大约10,000种候选化合物,发现计划的总成本可能接近5亿美元。以更便宜、更快和更有效的方式提供新药的压力意味着化学家必须能够以有效的方式提供大量的候选药物。其中一种技术是所谓的阵列化学,其中化合物以基质形式制备:例如,八种A型化合物与八种B型化合物同时反应,产生六十四种新化合物。这种方法有助于自动化,现在这种化学物质的大部分可以通过机器人合成器有效和自动地提供。然而,这种阵列方法有一个缺点。想象一下药物分子与其靶受体或酶的相互作用就像一把钥匙(药物)插入一把锁(受体/酶)。在药物发现过程的开始,我们有锁,但没有钥匙。化学家就像锁匠一样,会拿一把主干(一把空白钥匙),用不同的取代基(对应于钥匙上编码锁的牙齿的不同排列)来装饰主干。因此,我们可以看到,主干和图案都很重要--如果锁是丘布设计的,那么制作成百上千把耶鲁钥匙是没有好处的。然而,到目前为止,大多数用于阵列合成大量化合物作为潜在关键的化学方法只允许化学家一次研究一种类型的骨架。显然,更有效的是有一种方法,允许我们同时改变我们制造的钥匙的类型,同时仍然保留改变钥匙上的齿的图案的能力,这将允许它们选择性地与所需的锁相互作用。我们如何才能做到这一点?在这里进行的工作将开发一种新的方法来合成的阵列,基于使用的关键。这些是小分子,可以让我们以可控的方式将两种、三种或四种不同的市售成分结合在一起。一旦这些成分连接在一起,我们就可以改变骨架的形状,方法是让各个成分反应在一起,形成环状分子。例如,如果我们将三个组分A、B和C在关键点上连接在一起,我们可以让主链单独存在,或者我们可以通过将A连接到B、A连接到C或B连接到C来使它环化。这四种可能的选择中的每一种都将具有非常不同的形状,因此为我们的药物发现钥匙提供了不同的骨干,并且仍然能够改变A,B和C的性质(即钥匙的牙齿)。所有这些的挑战是开发将各种组分添加到关键的方法,这些方法足够温和,不会破坏我们将用于在环化中将组分连接在一起的基团,这就是当前拨款中将要研究的内容。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iridium‐Catalyzed Asymmetric Allylic Amination with Polar Amines: Access to Building Blocks with Lead‐Like Molecular Properties
  • DOI:
    10.1002/adsc.201000721
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Paolo Tosatti;J. Horn;A. Campbell;D. House;A. Nelson;S. Marsden
  • 通讯作者:
    Paolo Tosatti;J. Horn;A. Campbell;D. House;A. Nelson;S. Marsden
Rhodium-catalyzed conjugate addition with functionized boronate: Divergent access to various building blocks with lead-like molecular properties
铑催化的与官能化硼酸酯的共轭加成:不同方式获得具有类铅分子特性的各种结构单元
A convergent rhodium-catalysed asymmetric synthesis of tetrahydroquinolines.
  • DOI:
    10.1039/c4cc04940c
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ho Yin Li;J. Horn;A. Campbell;D. House;A. Nelson;S. Marsden
  • 通讯作者:
    Ho Yin Li;J. Horn;A. Campbell;D. House;A. Nelson;S. Marsden
ORGN 431-Iterative cross-metathesis and Cu-catalyzed asymmetric allylic substitution: Matched and mismatched effects
ORGN 431-迭代交叉复分解和铜催化的不对称烯丙基取代:匹配和不匹配的效果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Marsden其他文献

Conceptual design workflow for the STEP Prototype Powerplant
STEP 原型动力装置的概念设计工作流程
  • DOI:
    10.1016/j.fusengdes.2024.114238
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. I. Muldrew;Chris Harrington;Jonathan Keep;Chris Waldon;Christopher Ashe;Rhian Chapman;Charles Griesel;Alexander J. Pearce;Francis Casson;Stephen Marsden;E. Tholerus
  • 通讯作者:
    E. Tholerus
Multi-Objective Bayesian Optimization for Design of Pareto-Optimal Current Drive Profiles in STEP
STEP 中帕累托最优电流驱动曲线设计的多目标贝叶斯优化
  • DOI:
    10.1109/tps.2024.3382775
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Theodore Brown;Stephen Marsden;Vignesh Gopakumar;Alexander Terenin;Hong Ge;Francis Casson
  • 通讯作者:
    Francis Casson

Stephen Marsden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Marsden', 18)}}的其他基金

AA-STARR: Aromatic Amine Synthesis by Tapping Aminium Radical Reactivity
AA-STARR:利用铵自由基反应合成芳香胺
  • 批准号:
    EP/R023492/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
The Realisation of Fragment-Oriented Synthesis
面向片段合成的实现
  • 批准号:
    EP/P016618/1
  • 财政年份:
    2017
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
Hydrogen Transfer Reactions of Amines
胺的氢转移反应
  • 批准号:
    EP/F037643/1
  • 财政年份:
    2008
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant

相似国自然基金

基于Trojan Horse strategy的新型药物递呈系统在肝癌射频消融中的应用
  • 批准号:
    LQ19H160021
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Strategy I植物的铁元素吸收代谢分子调控机制研究
  • 批准号:
    30530460
  • 批准年份:
    2005
  • 资助金额:
    140.0 万元
  • 项目类别:
    重点项目

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Standard Grant
Heterologous prime boost strategyを利用した粘膜免疫を誘導するワクチンの開発
开发使用异源初免加强策略诱导粘膜免疫的疫苗
  • 批准号:
    24K12699
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Fellowship
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
  • 批准号:
    MR/X008827/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
TTS APC: Transborylation: A Turnover Strategy for Asymmetric p-Block Catalysis
TTS APC:硼基转移:不对称 p 嵌段催化的周转策略
  • 批准号:
    EP/Y029321/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Fellowship
Strategy for improving clinical obesity therapeutics
改善临床肥胖治疗的策略
  • 批准号:
    MR/Y014707/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Continuing Grant
Generation of intra-tumoral stem-like tissue-resident memory CD8+ T cells, as a novel immunotherapeutic strategy against cancer
生成肿瘤内干细胞样组织驻留记忆 CD8 T 细胞,作为一种新型的癌症免疫治疗策略
  • 批准号:
    24K18475
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-market strategy in service provider internationalization
服务提供商国际化的非市场战略
  • 批准号:
    24K16415
  • 财政年份:
    2024
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了