Strategic Feedback Control of Pharmaceutical Crystallization Processes

药物结晶过程的策略反馈控制

基本信息

  • 批准号:
    EP/E022294/1
  • 负责人:
  • 金额:
    $ 27.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

A significant proportion of materials are produced in crystalline form. Many of these crystals are obtained by nucleation and growth from solution. This type of crystal production is often referred to as industrial crystallization. Crystallization is a key separation and purification unit in most of the pharmaceutical, food and fine chemical processes, with a significant impact on the efficiency and profitability of the overall process. Over 90% of all pharmaceutical products contain active ingredients produced in crystalline form and typical raw material cost for a single batch of active pharmaceutical ingredient is $1 to $2 million. Failure to meet product specifications incurs significant costs. For efficient downstream operation (such as filtration and drying) and product effectiveness (e.g. bioavailability, tablet stability) the control of crystal purity, size distribution and shape can be critically important. The crystal size and shape affect the dissolution rate, which is an important property of crystals for medicinal use. In the pharmaceutical industry, the relative impact of drug benefit versus adverse side effects can depend on the dissolution rate. Control of crystal size and shape enables the optimization of the dissolution rate to maximize the benefit while minimizing the side effects. Poor control of crystal size and shape can also result in unacceptably long filtration or drying times, or in extra processing steps, such as recrystallization or milling, and can influence the purity of the product which is especially important in the food and pharmaceutical industries, in which the crystals are consumed. Improved control of crystallization processes offer possibilities for better product quality and improved process efficiency, for example by reducing time to market (and extending the length of time before patent expiration), and the reduction of compromised batches, therefore providing significant increase in quality of life, for example by making new drugs available more quickly and at lower cost. However, controlling crystallization is challenging due its high nonlinearity and its high sensitivity to process conditions. The aim of the research is to develop a systematic and comprehensive framework for controlling pharmaceutical crystal formation that incorporates first-principles simulation models, efficient dynamic optimization and model based control algorithms, as well as novel mathematical analysis techniques. The approach will allow to control the shape of the crystal and the overall form of the size distribution by repeatedly solving a constrained nonlinear optimization problem in real-time that will adjust the operating conditions to achieve the desired targets, and guarantees that the process operates within feasible conditions. Uncertainties in the operating conditions will be incorporated in the controller design to reduce variability of the product quality from its desired value. Measurements provided by in situ process analytical technology will be used in real-time by the feedback control strategy to estimate and predict the product quality for different operating conditions. This technique will be useful in treating several industrially important key problems in crystallization, such as controlling the formation of desired polymorphs and/or achieving consistent product quality despite of uncertainties due to scale-up. The end result of the project will be a novel methodology for crystallization control, which will provide a comprehensive framework (including model, algorithm, software and equipment) for the robust design of desired polymorph, crystal shape as well as the form of the crystal size distribution for specific applications (e.g. drug delivery and dosage, or proteomics), opening the way toward systematic crystal engineering in the future.
很大一部分材料是以晶体形式生产的。其中许多晶体是通过溶液成核和生长获得的。这种类型的晶体生产通常被称为工业结晶。结晶是大多数制药、食品和精细化工过程中的关键分离纯化单元,对整个过程的效率和盈利能力有重大影响。超过90%的药品含有以晶体形式生产的活性成分,一批活性药物成分的典型原材料成本为100至200万美元。不能满足产品规格会产生巨大的成本。对于高效的下游操作(如过滤和干燥)和产品有效性(如生物利用度、片剂稳定性),晶体纯度、粒度分布和形状的控制至关重要。晶体的大小和形状影响溶出度,而溶出度是药用晶体的一个重要性质。在制药行业,药物益处与副作用的相对影响可能取决于溶出度。对晶体大小和形状的控制可以优化溶解速度,在最大限度地提高效益的同时将副作用降至最低。对晶体大小和形状的控制不当还可能导致过滤或干燥时间过长,或导致额外的加工步骤,如重结晶或研磨,并可能影响产品的纯度,这在消费晶体的食品和制药行业尤其重要。改进的结晶过程控制为更好的产品质量和更高的工艺效率提供了可能性,例如通过缩短上市时间(和延长专利到期前的时间长度),以及减少受影响的批次,从而显著提高生活质量,例如通过更快和更低的成本推出新药。然而,由于其高度的非线性和对工艺条件的高度敏感性,控制结晶是具有挑战性的。这项研究的目的是开发一个系统和全面的框架来控制药物晶体的形成,包括第一性原理模拟模型,有效的动态优化和基于模型的控制算法,以及新的数学分析技术。该方法将允许通过实时重复求解约束的非线性优化问题来控制晶体的形状和尺寸分布的整体形式,该问题将调整操作条件以实现期望的目标,并确保过程在可行的条件下操作。运行条件的不确定性将被纳入控制器设计中,以减少产品质量与其期望值的变化性。现场过程分析技术提供的测量结果将通过反馈控制策略实时使用,以估计和预测不同操作条件下的产品质量。这项技术将有助于解决结晶过程中几个重要的工业关键问题,例如控制所需晶型的形成和/或实现一致的产品质量,尽管由于放大而存在不确定性。该项目的最终结果将是一种新的结晶控制方法,它将提供一个全面的框架(包括模型、算法、软件和设备),以稳健地设计所需的晶型、晶体形状以及特定应用(例如药物输送和剂量或蛋白质组学)的晶体尺寸分布形式,从而为未来的系统晶体工程开辟道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Nagy其他文献

Myeloablation Triggers Bone Marrow Niche Remodeling Resulting in Transient Collagenopathy and Impaired Platelet Function
  • DOI:
    10.1182/blood-2024-207360
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Kristina Mott;Margret Droste;Maria Drayss;Lukas Johannes Weiss;Zoltan Nagy;Harald Schulze
  • 通讯作者:
    Harald Schulze
G6b-B Directs Megakaryocyte Transcriptional Program Controlling Differentiation and Bone Marrow Homeostasis
  • DOI:
    10.1182/blood-2024-201508
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Maximilian Englert;Gabriel H.M. Araujo;Harald Schulze;Bernhard Nieswandt;Zoltan Nagy
  • 通讯作者:
    Zoltan Nagy
A hybrid system for design space estimation in a rotary tablet press
一种用于旋转式压片机设计空间估计的混合系统
  • DOI:
    10.1016/j.ijpharm.2025.125663
  • 发表时间:
    2025-06-10
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    Mohammad Shahab;Sunidhi Bachawala;Marcial Gonzalez;Zoltan Nagy;Gintaras Reklaitis
  • 通讯作者:
    Gintaras Reklaitis
Data on the interaction between thermal comfort and building control research
  • DOI:
    10.1016/j.dib.2018.01.033
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    June Young Park;Zoltan Nagy
  • 通讯作者:
    Zoltan Nagy
Erratum to: Ranking parameters in urban energy models for various building forms and climates using sensitivity analysis
  • DOI:
    10.1007/s12273-023-0988-2
  • 发表时间:
    2023-01-17
  • 期刊:
  • 影响因子:
    5.900
  • 作者:
    Aysegul Demir Dilsiz;Kaitlynn Ng;Jérôme Kämpf;Zoltan Nagy
  • 通讯作者:
    Zoltan Nagy

Zoltan Nagy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Nagy', 18)}}的其他基金

Workshop on Atmospheric and Urban Digital Twins (AUDT); Austin, Texas
大气和城市数字孪生研讨会(AUDT);
  • 批准号:
    2324744
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
CMMI-EPSRC: Right First Time Manufacture of Pharmaceuticals (RiFTMaP)
CMMI-EPSRC:药品的首次成功制造 (RiFTMaP)
  • 批准号:
    2140452
  • 财政年份:
    2021
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
EFRI DCheM: Digital design of a network of distributed modular and agile manufacturing systems with optimal supply chain for personalized medical treatments
EFRI DCheM:分布式模块化和敏捷制造系统网络的数字化设计,具有个性化医疗的最佳供应链
  • 批准号:
    2132142
  • 财政年份:
    2021
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
I-Corps: Miniaturized, End-to-End Pharmaceutical Manufacturing Platform
I-Corps:小型化端到端药品制造平台
  • 批准号:
    1745798
  • 财政年份:
    2017
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Research Grant
CAREER: Active Feedback to Control Dynamic Quantum Phases
职业:主动反馈控制动态量子相
  • 批准号:
    2238895
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Continuing Grant
Travel: Improving the Utility of Haptic Feedback in Upper-Limb Prosthesis Control: Establishing user-centric guidelines for engineering innovation
旅行:提高上肢假肢控制中触觉反馈的效用:建立以用户为中心的工程创新指南
  • 批准号:
    2331318
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Ultrasensitive mass sensing utilizing weakly-coupled micro resonators' mode localization, with nonlinear feedback control
利用弱耦合微谐振器的模式定位和非线性反馈控制的超灵敏质量传感
  • 批准号:
    22KJ0428
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Feedback Control of Flow Separation around an Airfoil using Deep Reinforcement Learning
使用深度强化学习对机翼周围的流动分离进行反馈控制
  • 批准号:
    23KJ0866
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Electrical stimulation to control feedback modulation of perception
电刺激控制感知的反馈调制
  • 批准号:
    10728455
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Development of Robust Quantum Error Correction by Continuous-Time Quantum Feedback Control
通过连续时间量子反馈控制开发鲁棒量子纠错
  • 批准号:
    23H01432
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Multi-Rate Feedback Control Framework for Design and Analyzing of Decentralized and Federated Learning
用于设计和分析去中心化联邦学习的多速率反馈控制框架
  • 批准号:
    2311007
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
  • 批准号:
    22KJ0183
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了