EFFECT OF THERMO-ELECTRO-MECHANICAL COUPLING AND NON-LINEARITIES ON DYNAMIC PROCESSES IN INELASTIC LAYERED STRUCTURES
热机电耦合和非线性对非弹性层状结构动态过程的影响
基本信息
- 批准号:EP/E030351/1
- 负责人:
- 金额:$ 47.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The forced-vibration analysis of structures and their members occupies a significant place in the dynamics of deformable systems. An accurate prediction of the dynamic and quasi-static response of structures and their members is a huge challenge, since the material of a structure may become plastic under intensive loading and/or exhibit viscous properties. Variable viscoelastoplastic behaviour should be studied when designing metal dampers for the vibrations of building structures under wind and seismic loads, devices for suppressing vibrations of pipelines, test specimens in low-cycle fatigue tests, etc.It is well known that the inelastic deformation of a material is accompanied by release of heat due to dissipation of mechanical energy. We may distinguish at least two classes of processes when such thermal effects should be always taken into account. The first class includes intensive monotonic or cyclic plastic deformation. Under certain conditions such as impact load or resonant vibrations, the dissipative heating may reach a significant level. This should be taken into account, for example, in evaluating the serviceability of elements of damping systems or when developing the techniques for accelerated analysis of the low-cycle fatigue of materials. The dissipative heating plays a key role in the formation of adiabatic shear bands in viscoplastic bodies under the high-speed loading. The second class includes thermo-electro-mechanical material models, thermographic techniques for detection of defects, non-isothermal models of crack propagation, different approaches to active vibration control, etc. The heating may change the strength of the structure, deteriorate its performance, and, under adverse conditions, even cause failure. Geometrical nonlinearity and heterogeneity are the additional complicating factors.The combined effect of the dynamic properties, nonlinearity (both inelasticity and geometrical nonlinearity) as well as the thermo-electro-mechanical coupling involves complex behavioural models. Therefore, an accurate simulation of complex dynamic and quasi-static processes in thin-wall inelastic passive and active members demands new approaches to be developed in order to successfully attack the problem. The proposed work is very timely because the interaction between mechanical, electric and thermal fields in layered structures is currently the subject of strong academic and industrial interest. Exploration of the said interrelations and couplings promises the discovery of new interesting and industrially valuable effects.The overall aim of the proposed research is to improve our understanding of the complex coupled processes in thin-wall inelastic structures that can contain both active and passive layers and can experience intensive cyclic or impact loading. We intend to clarify the role that such factors as the inherent dynamic properties, the material and geometrical nonlinearities, heterogeneity of the stress-strain state and the coupling of the mechanical, electrical and thermal fields can play in defining the structure response, with a long-term goal of development of general design guidelines to achieve the necessary productivity and reliability of structures.
结构及其构件的强迫振动分析在变形系统动力学中占有重要地位。结构及其构件的动态和准静态响应的准确预测是一个巨大的挑战,因为结构的材料在强烈的载荷作用下可能变成塑性和/或表现出粘性。在设计建筑结构在风和地震作用下振动的金属阻尼器、管道减振装置、低周疲劳试验试件等时,需要研究可变粘弹塑性行为。众所周知,材料的非弹性变形伴随着机械能的耗散而释放热量。当应始终考虑这种热效应时,我们可以区分至少两类过程。第一类包括强烈的单调或循环塑性变形。在一定条件下,如冲击载荷或共振振动,耗散热可能达到显著水平。例如,在评估减震系统元件的适用性时,或在开发材料低周疲劳加速分析技术时,应考虑这一点。在高速载荷作用下,耗散热对粘塑性体内绝热剪切带的形成起着关键作用。第二类包括热电-机械材料模型、用于缺陷检测的热像技术、裂纹扩展的非等温模型、不同的主动振动控制方法等。加热可能改变结构的强度,降低其性能,在不利条件下甚至导致失效。几何非线性和非均质性是附加的复杂因素,动力学特性、非线性(包括非弹性和几何非线性)以及热-机电耦合的综合作用涉及复杂的行为模型。因此,要准确地模拟薄壁非弹性被动和主动构件的复杂动态和准静态过程,就需要开发新的方法来成功地解决这一问题。提出的工作是非常及时的,因为层状结构中的力、电和热场之间的相互作用是目前学术界和工业界非常感兴趣的课题。对上述相互关系和耦合关系的探索有望发现新的有趣的和有工业价值的效应。本研究的总体目标是提高我们对薄壁非弹性结构中复杂的耦合过程的理解,这种结构既可以包含主动层,也可以包含被动层,并且可以承受强烈的循环或冲击载荷。我们打算阐明诸如固有的动力特性、材料和几何非线性、应力-应变状态的非均质性以及力、电和热场的耦合等因素在定义结构响应中所起的作用,并着眼于制定通用的设计准则,以实现结构所需的生产率和可靠性。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of a Functionally Graded Interlayer to Improve Bonding in Coated Plates
使用功能梯度中间层改善涂层板的粘合
- DOI:10.1163/156856109x433081
- 发表时间:2009
- 期刊:
- 影响因子:2.3
- 作者:Kashtalyan M
- 通讯作者:Kashtalyan M
Effect of Residual Stresses on Wave Propagation in Adhesively Bonded Multi layered MEMS Structures
残余应力对多层 MEMS 结构中波传播的影响
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:2.4
- 作者:Kashtalyan M.
- 通讯作者:Kashtalyan M.
Simplified monoharmonic approach to investigation of forced vibrations of thin wall multilayer inelastic elements with piezoactive layers under cyclic loading
- DOI:10.1007/s00419-010-0408-9
- 发表时间:2011-02
- 期刊:
- 影响因子:2.8
- 作者:Y. Zhuk;I. Guz;C. Sands
- 通讯作者:Y. Zhuk;I. Guz;C. Sands
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Guz其他文献
Igor Guz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Guz', 18)}}的其他基金
3-D Dynamic Problems for Cracked Layered Materials with Contact Interaction of Crack Faces
具有裂纹面接触相互作用的裂纹层状材料的 3-D 动力学问题
- 批准号:
EP/E020976/1 - 财政年份:2007
- 资助金额:
$ 47.67万 - 项目类别:
Research Grant
相似国自然基金
Thermo-TDR技术监测根区土壤物理性状:根系的影响机理及校正
- 批准号:41977011
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
风寒湿介导Thermo-TRPs/HSPs串话调控膝骨关节炎及温通中药的干预机制研究
- 批准号:81973874
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
$ 47.67万 - 项目类别:
Research Grant
Excellence in Research: Dynamic All-Solid-State Hybrid Electro-Thermo Chromic Solar Radiation Modulator for Smart Windows Applications
卓越研究:适用于智能窗户应用的动态全固态混合电热致变色太阳辐射调制器
- 批准号:
2200397 - 财政年份:2022
- 资助金额:
$ 47.67万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
2140376 - 财政年份:2021
- 资助金额:
$ 47.67万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
1821843 - 财政年份:2018
- 资助金额:
$ 47.67万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
1821573 - 财政年份:2018
- 资助金额:
$ 47.67万 - 项目类别:
Standard Grant
Effective Properties of Thermo-Electro-Mechanically Coupled Smart Piezoelectric Nanocomposites
热机电耦合智能压电纳米复合材料的有效性能
- 批准号:
RTI-2018-00703 - 财政年份:2017
- 资助金额:
$ 47.67万 - 项目类别:
Research Tools and Instruments
Modeling of Ionic Electroactive Polymers - Consistent Formulation of the thermo-electro-chemo-mechanical coupling effects and Finite-Element Discretization
离子电活性聚合物建模 - 热-电化学-机械耦合效应和有限元离散化的一致公式
- 批准号:
257128106 - 财政年份:2014
- 资助金额:
$ 47.67万 - 项目类别:
Priority Programmes
On nonlinear thermo-electro-mechanics in the context of electro-active polymers
电活性聚合物背景下的非线性热机电力学
- 批准号:
246833458 - 财政年份:2014
- 资助金额:
$ 47.67万 - 项目类别:
Research Grants
NSF/DOE Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces
NSF/DOE 热电合作伙伴关系:具有可扩展热机械和机电接口的汽车热电模块
- 批准号:
1048796 - 财政年份:2011
- 资助金额:
$ 47.67万 - 项目类别:
Continuing Grant
Electro-thermo-mechanical modeling of Field Assisted Sintering Technology using high-order finite elements validated by experiments
使用经过实验验证的高阶有限元对现场辅助烧结技术进行电热机械建模
- 批准号:
165958631 - 财政年份:2010
- 资助金额:
$ 47.67万 - 项目类别:
Research Grants