Signal Transduction by Essential VicRKX in Pneumococcus
肺炎球菌中必需 VicRKX 的信号转导
基本信息
- 批准号:7335582
- 负责人:
- 金额:$ 35.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAnimal ModelAnimalsAntibiotic ResistanceAntibioticsBacteriaBindingBiochemicalBiochemical GeneticsBiochemical ReactionCell WallCell surfaceCellsConditionCytoplasmDNADataEnzymesFlavin MononucleotideFluorescence AnisotropyFutureGene ExpressionGene TargetingGenesGeneticGenetic ScreeningGenetic TranscriptionGoalsGrantGrowthHumanIn VitroInfectionKnowledgeLacZ GenesLactamaseMeasuresMediatingMembrane ProteinsMetabolicMetalsMethodsNaturePeptidoglycanPhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPhysiologyPlayPromoter RegionsPropertyProteinsPyruvate OxidaseRateReactionRegulationRegulonReporterResearch PersonnelResistance developmentRoleRunningScreening procedureSignal TransductionSignal Transduction PathwaySiteStreptococcusStreptococcus pneumoniaeStressSurfaceSystemTestingTimeTranscriptional ActivationTranscriptional RegulationTransferaseVirulenceVirulence Factorsacetyl phosphatebaseextracellularfeedinggenetic selectionin vivoinsightmembermutantpathogenprogramsprotein-histidine kinaseresearch studyrespiratoryresponsesmall moleculevaccine developmentyeast two hybrid system
项目摘要
Streptococcus pneumoniae (pneumococcus) is an important gram positive human respiratory pathogen that
is developing antibiotic resistance. The essential VicRK two component system (TCS) and its associated
third component VicX are required for pneumococcal virulence. The long-term goal of this proposal is to
determine the signal transduction pathways used by the VicRKX system to regulate genes encoding an
essential murein biosynthetic enzyme and established virulence factors on the pneumococcal cell surface.
Our new results show that this regulation is direct and mediated by phosphorylation of the VicR response
regulator (RR). Other new results suggest that defective cell wall biosynthesis may generate metabolic
signals sensed by the VicRKX system, possibly by the VicK histidine kinase (HK), which lacks an
extracellular sensing domain but contains a PAS domain, or by other phosphoryl group donors. Five Specific
Aims will be achieved in this five-year grant: Aim I, We will characterize the binding of phosphorylated VicR
and the resulting transcription activation at promoter regions of key regulon gene members using in vitro
biochemical methods. Aim II. We will determine the expression levels of VicRKX proteins and the virulence
properties of vicRKX mutants to understand why the VicK HK is not essential in S. pneumoniae growing in
culture, but is required for virulence. We will use genetic approaches to determine which other donors
phosphorylate the VicR RR in the absence of the VicK HK. Aim III. We will use biochemical approaches to
determine the signal(s) sensed by the VicK HK and whether the VicK HK possesses a VicR-P phosphatase
activity. We will construct lacZ reporter fusions to key regulon genes to determine culture and stress
conditions that may be sensed by the VicRKX system. Genetic screens and selections will be used to
identify possible signals sensed by the VicRKX system and other modes of regulation of these virulence
factor genes. Aim IV. We will use biochemical and genetic approaches to determine the roles of the VicX
third component and putative VicK phosphatase activity in VicRKX signal transduction. We will determine
whether the (3-lactamase fold in VicX plays a role in sensing additional signals. Aim V. We will use
biochemical and microarray methods to determine new members of the VicRKX regulon that were missed in
previous studies. This grant will provide fundamental new knowledge about the regulation of important cell
wall biosynthesis and virulence factor genes in a serious human pathogen. It will provide insights into the
multiple mechanisms of signal transduction used by the VicRKX system in pneumococcus and likely other
species of streptococcus to communicate between the cytoplasm and cell surface. Understanding the
unusual features of VicRKX signal transduction will extend the paradigm of TCS regulation. Finally, gene
products in the VicRKX regulon are promising surface targets for future antibiotic and vaccine development.
肺炎链球菌(肺炎球菌)是一种重要的革兰氏阳性人类呼吸道病原体,
正在产生抗生素耐药性基本的VicRK双组分系统(TCS)及其相关
第三组分VicX是肺炎球菌毒力所必需的。该提案的长期目标是
确定VicRKX系统用于调节基因编码的信号转导途径,
必需的胞壁素生物合成酶和肺炎球菌细胞表面上已建立的毒力因子。
我们的新结果表明,这种调节是直接的,并通过VicR反应的磷酸化介导。
调节器(RR)。其他新的结果表明,有缺陷的细胞壁生物合成可能会产生代谢产物,
由VicRKX系统感知的信号,可能是由VicK组氨酸激酶(HK)感知的,其缺乏一个
细胞外传感结构域,但含有PAS结构域,或通过其他磷酰基供体。五个具体
本研究计划在五年内完成以下目标:目标一,我们将研究磷酸化VicR的结合特性
以及在关键调节子基因成员的启动子区域处产生的转录激活,
生物化学方法Aim II.我们将确定VicRKX蛋白的表达水平和毒力
vicRKX突变体的性质,以理解为什么VicK HK在S.肺炎菌生长在
文化,但需要毒力。我们将用遗传学方法来确定其他捐赠者
在不存在VicK HK的情况下使VicR RR磷酸化。Aim III.我们将使用生物化学方法,
确定由VicK HK感测的信号以及VicK HK是否具有VicR-P磷酸酶
活动我们将构建lacZ报告融合关键调节子基因,以确定文化和压力
VicRKX系统可能感测到的条件。遗传筛选和选择将用于
确定VicRKX系统和这些毒力的其他调节模式所感知的可能信号
因子基因。目标四。我们将使用生物化学和遗传学方法来确定VicX的作用
第三组分和VicRKX信号转导中的推定VicK磷酸酶活性。我们将确定
VicX中的β-内酰胺酶折叠是否在感知额外信号中起作用。目标五:我们将使用
生物化学和微阵列方法,以确定新成员的VicRKX调节子,错过了在
以前的研究。这项资助将提供有关重要细胞调节的基本新知识,
壁生物合成和毒力因子基因在一个严重的人类病原体。它将提供深入了解
VicRKX系统在肺炎球菌和可能的其他细菌中使用的多种信号转导机制
在细胞质和细胞表面之间进行通讯的链霉菌。了解
VicRKX信号转导的不寻常特征将扩展TCS调节的范例。最后,吉恩
VicRKX调节子中的产物是未来抗生素和疫苗开发的有希望的表面靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MALCOLM E. WINKLER其他文献
MALCOLM E. WINKLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MALCOLM E. WINKLER', 18)}}的其他基金
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10655457 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10226898 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10452519 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
Mechanisms of Chemokine Killing and Resistance of Streptococcus pneumoniae
肺炎链球菌的趋化因子杀伤及耐药机制
- 批准号:
8861641 - 财政年份:2015
- 资助金额:
$ 35.75万 - 项目类别:
Functions of Pneumococcal Murein Hydrolases Required for Division and Virulence
肺炎球菌胞壁质水解酶的分裂和毒力所需的功能
- 批准号:
8880441 - 财政年份:2014
- 资助金额:
$ 35.75万 - 项目类别:
Roles of Phosphate Uptake in Pneumococcal Antibiotic Resistance and Virulence
磷酸盐吸收在肺炎球菌抗生素耐药性和毒力中的作用
- 批准号:
8416937 - 财政年份:2012
- 资助金额:
$ 35.75万 - 项目类别:
Roles of Phosphate Uptake in Pneumococcal Antibiotic Resistance and Virulence
磷酸盐吸收在肺炎球菌抗生素耐药性和毒力中的作用
- 批准号:
8302505 - 财政年份:2012
- 资助金额:
$ 35.75万 - 项目类别:
Supramolecular Complexes That Mediate Pneumococcal PG Biosynthesis and Virulence
介导肺炎球菌 PG 生物合成和毒力的超分子复合物
- 批准号:
8507826 - 财政年份:2012
- 资助金额:
$ 35.75万 - 项目类别:
Functions of the Essential Pneumococcal VicRKX Regulon
肺炎球菌必需 VicRKX 调节子的功能
- 批准号:
7046652 - 财政年份:2006
- 资助金额:
$ 35.75万 - 项目类别:
Signal Transduction by Essential VicRKX in Pneumococcus
肺炎球菌中必需 VicRKX 的信号转导
- 批准号:
7748997 - 财政年份:2006
- 资助金额:
$ 35.75万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 35.75万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 35.75万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 35.75万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




