Mechanisms of Chemokine Killing and Resistance of Streptococcus pneumoniae
肺炎链球菌的趋化因子杀伤及耐药机制
基本信息
- 批准号:8861641
- 负责人:
- 金额:$ 28.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-10 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcuteAmino AcidsAntibioticsBacillus anthracisBacteriaBacterial ModelBindingBiochemicalBiologicalBiological AssayCXCL10 geneCXCL11 geneCXCL9 geneCell WallCell divisionCellsChargeCleaved cellCollaborationsComplexDataDefensinsDevelopmentEncapsulatedEventExhibitsFluorescenceFluorescence MicroscopyGeneticGoalsHumanHydrolysisImmuneImmune responseImmune systemIn VitroInfectionInflammatoryIntegral Membrane ProteinKnowledgeLaboratoriesLightLocationMembraneMethodsMicrobial BiofilmsMicroscopicModelingMolecularMutationN-Acetylmuramoyl-L-alanine AmidasePeptide HydrolasesPeptidoglycanPhysiologicalPlayPositioning AttributeProteinsReactionRegulationRelative (related person)ResistanceResistance developmentResolutionRoleSignal TransductionSolutionsStreptococcus pneumoniaeStructureSurfaceSystems DevelopmentTechniquesTestingTimeTissuesTransmembrane DomainVariantWorkadaptive immunityantimicrobial peptidebacterial resistancebactericidebasecapsulecell killingcell motilitycell typechemokineextracellulargenetic approachinsightkillingsmigrationmutantpathogenpathogenic bacteriaprototypepublic health relevanceresistance mechanismtime use
项目摘要
DESCRIPTION (provided by applicant): Chemokines are small chemotactic cytokines that control the migration and positioning of immune cells during immune system development and in the innate and adaptive immune responses. Notably, chemokines share structural features with the defensin-class of antimicrobial peptides (AMPs), and many types of chemokines show bactericidal activity comparable to AMPs in vitro. There is also evidence suggesting that chemokine bactericidal activity plays roles in innate immune responses. Yet, relatively little is known about the basic mechanisms by which chemokines kill bacteria or the mechanisms by which resistance develops to chemokine killing. The goal of this application is to fill in these major gaps in knowledge by elucidating the molecular mechanisms of chemokine CXCL10 killing and resistance of Streptococcus pneumoniae, which is a major human pathogen that also serves as a highly tractable genetic and cell biological bacterial model. This application is based
on a large body of unpublished data showing that S. pneumoniae is sensitive to killing by CXCL10 and related chemokines. Resistance of S. pneumoniae to CXCL10 killing is imparted by amino acid changes in extracellular loop domains of the transmembrane FtsX division protein. FtsX forms a complex with cytoplasmic ATPase FtsE and extracellular peptidoglycan (PG) hydrolase PcsB, and the FtsEX:PcsB complex functions as a regulated PG hydrolase in cell division. The locations of the amino acid changes in the FtsX loop domains are consistent with decreased CXCL10 binding or impaired PcsB activation as mechanisms of CXCL10 resistance. An NMR solution structure of the large FtsX loop domain (ECL1) is near completion and will allow direct testing of these mechanisms. Together, these data support the central hypothesis of this application that CXCL10 binding to FtsX aberrantly activates PcsB PG hydrolase, thereby cleaving cell walls and killing cells. This central hypothesis and alternate hypotheses will be tested by three specific aims. Aim 1 will identify and characterize new classes of mechanistically informative CXCL10-resistant mutations and determine the mode of CXCL10 killing and sensitivity of S. pneumoniae cells in culture and in a host-relevant model of biofilm formation. Aim 2 will use NMR methods and biochemical assays to determine the structure of the FtsX loops and their interactions with CXCL10 and whether CXCL10 stimulates PcsB hydrolysis activity. Aim 3 will use microscopic methods to examine where CXCL10 binds relative to FtsEX:PcsB on pneumococcal cells and will also determine amino acids and regions in CXCL10 required for binding and killing of pneumococcal cells. Results from this application will provide the first detailed study of the physiological and biochemical mechanisms of chemokine killing of S. pneumoniae and the structural basis for CXCL10 resistance by amino acid changes in loop domains of FtsX. Besides filling in major gaps in knowledge about bactericidal chemokines compared to AMPs, this work will shed light on the function and regulation of the FtsEX:PcsB PG hydrolase in cell division and possibly provide a prototype for a new class of antibiotics.
描述(申请人提供):趋化因子是一种小的趋化性细胞因子,在免疫系统发育过程中控制免疫细胞的迁移和定位,并在先天性和获得性免疫反应中控制。值得注意的是,趋化因子具有防御素类抗菌肽(AMPs)的结构特征,许多类型的趋化因子在体外显示出与AMP相当的杀菌活性。也有证据表明,趋化因子杀菌活性在先天免疫反应中发挥作用。然而,人们对趋化因子杀死细菌的基本机制或对趋化因子杀伤产生抗药性的机制知之甚少。这项应用的目标是通过阐明趋化因子CXCL10杀死肺炎链球菌和耐药的分子机制来填补这些主要的知识空白。肺炎链球菌是一种主要的人类病原体,也是一个高度易处理的遗传和细胞生物学细菌模型。此应用程序基于
大量未发表的数据表明肺炎链球菌对CXCL10和相关趋化因子的杀伤敏感。肺炎链球菌对CXCL10杀伤的抵抗力是通过跨膜FtsX分裂蛋白胞外环区的氨基酸变化来实现的。FtsX与胞内ATPase FTSE和胞外肽聚糖(PG)水解酶PCSB形成复合体,FtsEX:PCSB复合体在细胞分裂过程中发挥调节PG水解酶的作用。FtsX环区氨基酸变化的位置与CXCL10结合减少或PCSB激活受损是CXCL10抗性的机制一致。大的FtsX环结构域(ECL1)的核磁共振溶液结构接近完成,将允许直接测试这些机制。综上所述,这些数据支持这一应用的中心假设,即CXCL10与FtsX结合后异常激活PCSB PG水解酶,从而裂解细胞壁并杀死细胞。这一中心假说和备选假说将通过三个具体目标进行检验。目的1将鉴定和表征新的机械信息性CXCL10耐药突变类型,并确定CXCL10在培养和与宿主相关的生物被膜形成模型中的杀灭模式和肺炎链球菌细胞的敏感性。目的2将使用核磁共振方法和生化分析来确定FtsX环的结构及其与CXCL10的相互作用,以及CXCL10是否刺激PCSB的水解活性。AIM 3将使用显微镜方法检查CXCL10与肺炎球菌细胞上FtsEX:PCSB的结合位置,并将确定CXCL10中结合和杀死肺炎球菌细胞所需的氨基酸和区域。这一应用的结果将首次详细研究趋化因子杀死肺炎链球菌的生理生化机制,以及通过FtsX环区氨基酸的变化来对抗CXCL10的结构基础。除了填补有关杀菌趋化因子与AMP相比的主要知识空白外,本工作还将阐明FtsEX:PCSB PG水解酶在细胞分裂中的功能和调控,并可能为一类新的抗生素提供原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MALCOLM E. WINKLER其他文献
MALCOLM E. WINKLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MALCOLM E. WINKLER', 18)}}的其他基金
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10226898 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10655457 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
New Regulatory Interactions and Circuits that Mediate the Dynamics, Homeostasis, and Stress Responses of Peptidoglycan Synthesis in the Superbug Streptococcus pneumoniae
调节超级细菌肺炎链球菌肽聚糖合成的动力学、稳态和应激反应的新调控相互作用和回路
- 批准号:
10452519 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
Functions of Pneumococcal Murein Hydrolases Required for Division and Virulence
肺炎球菌胞壁质水解酶的分裂和毒力所需的功能
- 批准号:
8880441 - 财政年份:2014
- 资助金额:
$ 28.8万 - 项目类别:
Roles of Phosphate Uptake in Pneumococcal Antibiotic Resistance and Virulence
磷酸盐吸收在肺炎球菌抗生素耐药性和毒力中的作用
- 批准号:
8416937 - 财政年份:2012
- 资助金额:
$ 28.8万 - 项目类别:
Roles of Phosphate Uptake in Pneumococcal Antibiotic Resistance and Virulence
磷酸盐吸收在肺炎球菌抗生素耐药性和毒力中的作用
- 批准号:
8302505 - 财政年份:2012
- 资助金额:
$ 28.8万 - 项目类别:
Supramolecular Complexes That Mediate Pneumococcal PG Biosynthesis and Virulence
介导肺炎球菌 PG 生物合成和毒力的超分子复合物
- 批准号:
8507826 - 财政年份:2012
- 资助金额:
$ 28.8万 - 项目类别:
Functions of the Essential Pneumococcal VicRKX Regulon
肺炎球菌必需 VicRKX 调节子的功能
- 批准号:
7046652 - 财政年份:2006
- 资助金额:
$ 28.8万 - 项目类别:
Signal Transduction by Essential VicRKX in Pneumococcus
肺炎球菌中必需 VicRKX 的信号转导
- 批准号:
7748997 - 财政年份:2006
- 资助金额:
$ 28.8万 - 项目类别:
Signal Transduction by Essential VicRKX in Pneumococcus
肺炎球菌中必需 VicRKX 的信号转导
- 批准号:
7335582 - 财政年份:2006
- 资助金额:
$ 28.8万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Operating Grants














{{item.name}}会员




