Decision Support in the Care of Preterm Newborns-Tool Development

早产儿护理中的决策支持-工具开发

基本信息

  • 批准号:
    7530584
  • 负责人:
  • 金额:
    $ 23.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Even after many advances in ventilator management, prediction of extubation outcome for a mechanically ventilated premature infant with respiratory distress syndrome (RDS) remains a challenging task for clinicians. We recently developed a machine-learned model (an Artificial Neural Network, ANN) to assist in decision- making regarding extubation of premature newborns (Mueller et al., 2004, 2006). The ANN model was found to perform with accuracy comparable to that of experienced clinicians; however, this approach needs to be compared to equally powerful machine-learning approaches before it can be evaluated in clinical practice. An appropriately validated decision-support tool could help in reducing the number of days a premature infant spends on a mechanical ventilator, and hence the risk of developing short and long-term side effects of mechanical ventilation, resulting in a corresponding decrease in overall health care costs. In this R21 proposal, we will use several machine-learning approaches combined as a committee formation to obtain the best prediction of extubation success for a given infant. Further, we will build on the previously developed ANN prototype to create an enhanced decision support tool by developing data representation, storage, management, and most important, causal inference, which will enable effective integration of the resulting web-based decision-support tool with clinical practice. This last feature is only possible due to the integrated nature of the proponents themselves, which range from data structure and mathematical modeling experts to experienced neonatologists with a well established working relationship. The proposed effort aims at using advanced modeling tools for translational research by developing a web-based decision-support tool to aid primarily inexperienced clinicians in their decision-making and by promoting interoperability and data exchange among researchers in this field. The critical feature of this infrastructure is its web-based nature, which enables clinicians to evaluate a predictor's accuracy and parametric sensitivity individually for each neonate without having to use any other software than a web-browser. Such a prediction model will be of critical value not only to increase overall clinical accuracy but also to identify effective measures of validity of the original predictions. The overall aim of this study is to develop a high performing web-based prediction system to use as a decision-support tool in clinical practice and to promote interoperability, and thus, data sharing and interaction among researchers in the neonatal community. PUBLIC HEALTH RELEVANCE: Predicting extubation outcome in premature infants on mechanical ventilators remains a challenging task even for experienced clinicians. In the proposed work, we aim to provide a sophisticated web-based tool that uses a machine-learning committee comprised of artificial neural networks (ANN), support vector machines (SVM), naive Bayesian classifiers (NBC), influence diagrams (ID), boosted decision trees (BDT) and multivariable logistic regression (MLR) to assist primarily inexperienced clinicians in the decision-making. For the implementation of this tool we propose to develop an XML schema and RDFS model that can promote interoperability, and thus, data sharing and interaction among researchers in the neonatal community.
描述(由申请人提供):即使在呼吸机管理方面取得了许多进展,预测患有呼吸窘迫综合征(RDS)的机械通气早产儿的拔管结果对于临床医生来说仍然是一项具有挑战性的任务。我们最近开发了一种机器学习模型(人工神经网络,ANN)来协助有关早产儿拔管的决策(Mueller 等人,2004 年,2006 年)。研究发现 ANN 模型的准确度可与经验丰富的临床医生相媲美;然而,这种方法需要与同样强大的机器学习方法进行比较,然后才能在临床实践中进行评估。经过适当验证的决策支持工具可以帮助减少早产儿使用机械呼吸机的天数,从而减少机械通气产生短期和长期副作用的风险,从而相应降低总体医疗保健成本。 在此 R21 提案中,我们将使用多种机器学习方法结合起来组成委员会,以获得特定婴儿拔管成功的最佳预测。此外,我们将在之前开发的 ANN 原型的基础上,通过开发数据表示、存储、管理以及最重要的因果推理来创建增强的决策支持工具,这将使基于网络的决策支持工具与临床实践有效集成。最后一个功能之所以成为可能,是因为支持者本身的综合性质,其中包括数据结构和数学建模专家以及具有良好工作关系的经验丰富的新生儿学家。拟议的工作旨在通过开发基于网络的决策支持工具来帮助主要缺乏经验的临床医生进行决策,并促进该领域研究人员之间的互操作性和数据交换,从而使用先进的建模工具进行转化研究。该基础设施的关键特征是其基于网络的性质,它使临床医生能够单独评估每个新生儿的预测器准确性和参数敏感性,而无需使用网络浏览器之外的任何其他软件。这样的预测模型不仅对于提高整体临床准确性而且对于确定原始预测有效性的有效衡量标准都具有重要价值。 本研究的总体目标是开发一个高性能的基于网络的预测系统,作为临床实践中的决策支持工具,并促进互操作性,从而促进新生儿社区研究人员之间的数据共享和互动。 公共卫生相关性:即使对于经验丰富的临床医生来说,预测机械呼吸机早产儿拔管结果仍然是一项具有挑战性的任务。在拟议的工作中,我们的目标是提供一个复杂的基于网络的工具,该工具使用由人工神经网络(ANN)、支持向量机(SVM)、朴素贝叶斯分类器(NBC)、影响图(ID)、增强决策树(BDT)和多变量逻辑回归(MLR)组成的机器学习委员会来帮助主要缺乏经验的临床医生做出决策。为了实现该工具,我们建议开发一个 XML 模式和 RDFS 模型,以促进互操作性,从而促进新生儿社区研究人员之间的数据共享和交互。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTINA MUELLER其他文献

MARTINA MUELLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTINA MUELLER', 18)}}的其他基金

Decision Support in the Care of Preterm Newborns-Tool Development
早产儿护理中的决策支持-工具开发
  • 批准号:
    7665362
  • 财政年份:
    2008
  • 资助金额:
    $ 23.42万
  • 项目类别:

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
促进肿瘤凋亡的融合蛋白CPP-TRAIL-ARTS C27的制备及机制研究
  • 批准号:
    81372444
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
雄性锹甲的生殖对策抉择ARTs及其进化机制-基于行为与SSRs标记的整合研究
  • 批准号:
    31201745
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ARTS: Broadening capacity for research on gall wasps in North America
ARTS:扩大北美瘿蜂研究能力
  • 批准号:
    2338008
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
  • 批准号:
    2349111
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Continuing Grant
Open Access Block Award 2024 - University of the Arts London
2024 年开放获取区块奖 - 伦敦艺术大学
  • 批准号:
    EP/Z532216/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Research Grant
Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
  • 批准号:
    10104584
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    EU-Funded
Art and Policy in the Global Contemporary: Examining the Role of the Arts in the Production of Public Policy
全球当代的艺术与政策:审视艺术在公共政策制定中的作用
  • 批准号:
    EP/Y036972/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Research Grant
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
  • 批准号:
    24K06445
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building Partnerships to Recruit Recent STEM Graduates into a Masters of Arts in Teaching Program
建立合作伙伴关系,招募应届 STEM 毕业生加入教学硕士项目
  • 批准号:
    2345165
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Standard Grant
地理総合における対話型鑑賞法を援用したArts-STEM型教科融合授業モデルの開発
利用综合地理学中的互动欣赏方法开发艺术-STEM型学科融合课堂模型
  • 批准号:
    24H02463
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
Arts4Us - Working Together to Scale up Place-Based Arts Initiatives that Support the Mental Health of Children and Young People
Arts4Us - 共同努力扩大支持儿童和青少年心理健康的地方艺术举措
  • 批准号:
    AH/Z505493/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Research Grant
ARTS: A corevision of the pinhole borers (Coleoptera: Curculionidae: Platypodinae) and symbiotic fungi (Raffaelea spp.) via multi-generational systematics training
艺术:通过多代系统学训练对针孔蛀虫(鞘翅目:象甲科:扁豆亚科)和共生真菌(拉斐菌属)进行共同观察
  • 批准号:
    2342481
  • 财政年份:
    2024
  • 资助金额:
    $ 23.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了