Computational Logic of Euclidean Spaces
欧几里得空间的计算逻辑
基本信息
- 批准号:EP/E034942/1
- 负责人:
- 金额:$ 31.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of the spatial information we encounter in everyday situations isqualitative, rather than quantitative, in character. Thus, forinstance, we may know which of two objects is the closer withoutmeasuring their distances; we may perceive an object to be convexwithout being able to describe its precise shape; or we may identifytwo areas on a map as sharing a boundary without knowing the equationthat describes it. This observation has prompted the development,within Artificial Intelligence, of various formalisms for reasoningwith qualitative spatial information.Although substantial progress has been made in analysing themathematical foundations and computational characteristics of suchformalisms, most of that progress has centred on systems for reasoningabout highly abstract problems concerning (typically) arbitraryregions in very general classes of topological spaces. But of course,the geometrical entities of interest for practical problems are notarbitrary subsets of general topological spaces, but rathermathematically very well-behaved regions of 2 and 3-dimensionalEuclidean space; moreover, the geometrical properties and relationsthese problems are concerned with are typically not merely topological, butrather affine or even metric in character. Together, these factorsseverly limit the practical usefulness of current qualitative spatialreasoning formalisms. Overcoming this limitation represents anexciting mathematical and computational challenge.We propose to meet this challenge by drawing on developments inmathematical logic, geometrical topology, and algebraic geometry thatthe spatial reasoning literature in AI has so far failed fully toexploit. Specifically, we shall investigate the computationalproperties of spatial and spatio-temporal logics for reasoning aboutmathematically well-behaved regions of 2- and 3-dimensional Euclideanspace. We shall develop and implement algorithms for reasoning with these logics. This investigation will illuminate the important relationships betweenhitherto separate research traditions, provide new techniques foraddressing challenging problems in the mathematical geometry, andyield logics of direct relevance to practical spatial reasoningproblems.
我们在日常生活中遇到的许多空间信息在性质上都是定性的,而不是定量的。因此,例如,我们可以知道两个物体中哪一个更近,而无需测量它们的距离;我们可能会认为一个物体是凸的,但无法描述它的精确形状;或者我们可能会在不知道描述边界的方程的情况下将地图上的两个区域识别为共享边界。这一观察促进了人工智能领域各种利用定性空间信息进行推理的形式主义的发展。尽管在分析此类形式主义的数学基础和计算特征方面已经取得了实质性进展,但大部分进展都集中在用于推理涉及非常一般的拓扑空间类别中(通常)任意区域的高度抽象问题的系统上。当然,实际问题中感兴趣的几何实体不是一般拓扑空间的任意子集,而是数学上表现良好的 2 维和 3 维欧几里得空间区域;此外,这些问题所涉及的几何性质和关系通常不仅仅是拓扑的,而且具有仿射甚至度量的特征。这些因素共同严重限制了当前定性空间推理形式主义的实际用途。克服这一限制代表着令人兴奋的数学和计算挑战。我们建议通过利用数学逻辑、几何拓扑和代数几何的发展来应对这一挑战,而人工智能中的空间推理文献迄今为止未能充分利用这些发展。具体来说,我们将研究空间和时空逻辑的计算属性,以推理 2 维和 3 维欧几里德空间的数学良好区域。我们将开发并实现用这些逻辑进行推理的算法。这项研究将阐明迄今为止不同的研究传统之间的重要关系,提供解决数学几何中具有挑战性的问题的新技术,并产生与实际空间推理问题直接相关的逻辑。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial reasoning with RCC 8 and connectedness constraints in Euclidean spaces
使用 RCC 8 进行空间推理和欧几里德空间中的连通性约束
- DOI:10.1016/j.artint.2014.07.012
- 发表时间:2014
- 期刊:
- 影响因子:14.4
- 作者:Kontchakov R
- 通讯作者:Kontchakov R
Spatial logics with connectedness predicates
具有连通性谓词的空间逻辑
- DOI:10.2168/lmcs-6(3:7)2010
- 发表时间:2010
- 期刊:
- 影响因子:0.6
- 作者:Kontchakov R
- 通讯作者:Kontchakov R
Handbook of Spatial Logics
空间逻辑手册
- DOI:10.1007/978-1-4020-5587-4_9
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kontchakov R
- 通讯作者:Kontchakov R
Logic for Programming, Artificial Intelligence, and Reasoning
编程逻辑、人工智能和推理
- DOI:10.1007/978-3-642-45221-5_9
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Benzmüller C
- 通讯作者:Benzmüller C
Topology, connectedness, and modal logic
- DOI:
- 发表时间:2008-07
- 期刊:
- 影响因子:0
- 作者:R. Kontchakov;Ian Pratt-Hartmann;F. Wolter;M. Zakharyaschev
- 通讯作者:R. Kontchakov;Ian Pratt-Hartmann;F. Wolter;M. Zakharyaschev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Zakharyaschev其他文献
Temporalising OWL 2 QL
时间化 OWL 2 QL
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alessandro Artale;Roman Kontchakov;F. Wolter;Michael Zakharyaschev - 通讯作者:
Michael Zakharyaschev
Ian Pratt-Hartmann, Fragments of First-Order Logic, vol. 56 of Oxford Logic Guides, Oxford University Press, 2023, pp. 672; ISBN: 978-0192867964 (Hardback) £127.50.
- DOI:
10.1007/s11225-025-10194-w - 发表时间:
2025-06-26 - 期刊:
- 影响因子:0.600
- 作者:
Frank Wolter;Michael Zakharyaschev - 通讯作者:
Michael Zakharyaschev
Multi-Dimensional Modal Logic, Maarten Marx and Yde Venema
- DOI:
10.1023/a:1008382206188 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Zakharyaschev - 通讯作者:
Michael Zakharyaschev
A Tableau Decision Algorithm for Modalized ALC with Constant Domains
- DOI:
10.1023/a:1021308527417 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Carsten Lutz;Holger Sturm;Frank Wolter;Michael Zakharyaschev - 通讯作者:
Michael Zakharyaschev
The Greatest Extension of S4 into which Intuitionistic Logic is Embeddable
- DOI:
10.1023/a:1005084328298 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Zakharyaschev - 通讯作者:
Michael Zakharyaschev
Michael Zakharyaschev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Zakharyaschev', 18)}}的其他基金
quantMD: Ontology-Based Management for Many-Dimensional Quantitative Data
quantMD:基于本体的多维定量数据管理
- 批准号:
EP/S032282/1 - 财政年份:2019
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
iTract: Islands of Tractability in Ontology-Based Data Access
iTract:基于本体的数据访问中的易处理性孤岛
- 批准号:
EP/M012670/1 - 财政年份:2015
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
ExODA: Integrating Description Logics and Database Technologies for Expressive Ontology-Based Data Access
ExODA:集成描述逻辑和数据库技术以实现基于表达本体的数据访问
- 批准号:
EP/H05099X/1 - 财政年份:2010
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
- 批准号:
2401437 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
Travel: Student Travel Support for Logic Mentoring Workshops 2024
旅行:2024 年逻辑辅导研讨会的学生旅行支持
- 批准号:
2408942 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
SHF: Small: Game Logic Programming
SHF:小:游戏逻辑编程
- 批准号:
2346619 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant