Analytical properties of scale functions
尺度函数的分析性质
基本信息
- 批准号:EP/E047025/1
- 负责人:
- 金额:$ 1.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Levy processes may be thought of as a class of models that describe the motion or path of a randomly moving particle which may diffuse or undergo independent random jumps whose order of magnitude may be both arbitrarily large or arbitrarily small. Levy processes have several distributional properties built in to their random structure that make them particularly attractive to work with as a mathematical tool when building and analyzing certain themes from within the field of applied probability.One particular class of Levy processes which has proved to be particularly popular from the point of view of applied probability are those which undergo jumps only in the negative direction. For this class of process recent developements in the last 10 years or so in their fluctuation theory has produced many distributional identities regarding the way in which such process (and variants thereof) move around in space (for example the probability that the process when starting at the origin hits a prespecified point below the origin). Principally these identities pertain to a field of mathematics known as potential analysis. Many of these identities are expressed in terms of functions known as `scale functions'. The main drive of this proposal is to obtain a firmer understanding of the analytical properties of these scale functions: smoothness, convexity/concavity and their role as a basis for solutions to certain linear systems whcih appear frequently in applied probability. Following the ever growning use of scale functions in the literature, the proposed study would make scale functions an even more robust mathematical tool to work with in the future. The proposal requests funding for an academic exchange between the PI and Prof. R. Song in the US who is an expert in the field of potential analysis and Levy processes.
列维过程可以被认为是一类描述随机运动粒子的运动或路径的模型,这些粒子可以扩散或经历独立的随机跳跃,其数量级可以是任意大或任意小。Levy过程的随机结构中有几个分布性质,这使得它们在应用概率领域中作为数学工具来构建和分析某些主题时特别有吸引力。从应用概率的角度来看,已经证明特别受欢迎的一类Levy过程是那些只在负方向上发生跳跃的过程。对于这类过程,最近10年左右的涨落理论的发展产生了许多关于这类过程(及其变体)在空间中移动方式的分布恒等式(例如,从原点开始的过程击中原点以下预定点的概率)。原则上,这些恒等式属于一个被称为势分析的数学领域。这些恒等式中有许多是用称为“尺度函数”的函数来表示的。这个建议的主要驱动力是获得这些尺度函数的分析性质的更坚定的理解:光滑性,凸性/凸性和它们的作用作为基础的解决方案,以某些线性系统whcih经常出现在应用概率。随着尺度函数在文献中的不断增长,拟议的研究将使尺度函数成为未来更强大的数学工具。该提案要求为PI和R教授之间的学术交流提供资金。Song先生是美国电位分析和Levy过程领域的专家。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Kyprianou其他文献
Small Airway Disease, Air Trapping and Airways Responsiveness in Patients With Primary Pulmonary Hypertensio
- DOI:
10.1378/chest.124.4_meetingabstracts.222s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Andreas Kyprianou;Darrin London;Maria Padilla;N. Kohn;Al Quinones;Steven Feinsilver;Alan Fein;X Arunabh - 通讯作者:
X Arunabh
Extreme Supervised Algorithm for Day Ahead Market Price Forecasting
用于日前市场价格预测的极端监督算法
- DOI:
10.1109/isc257844.2023.10293566 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stylianos Loizidis;S. Theocharides;V. Venizelou;Demetris Evagorou;G. Makrides;Andreas Kyprianou;G. Georghiou - 通讯作者:
G. Georghiou
Utility of Centrifugation Lysis Blood Cultures in the Diagnosis of Mycobacteria Tuberculosis in HIV Patients: Association With CD4 Counts <50 cells/mm
- DOI:
10.1378/chest.124.4_meetingabstracts.114s-b - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
M. Desruisseaux;Andreas Kyprianou;M.H. Kaplan;A.M. Fein;X. Arunabh - 通讯作者:
X. Arunabh
A stochastic optimisation framework for integrating photovoltaic systems, heat pumps, and energy storage in buildings
- DOI:
10.1016/j.applthermaleng.2025.127312 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:6.900
- 作者:
Andreas V. Olympios;Matthias Mersch;Fanourios Kourougianni;Christos N. Markides;Antonio M. Pantaleo;Andreas Kyprianou;George E. Georghiou - 通讯作者:
George E. Georghiou
Entrance laws at the origin of self-similar Markov processes in high dimensions
高维自相似马尔可夫过程起源的入口定律
- DOI:
10.1090/tran/8086 - 发表时间:
2018-12 - 期刊:
- 影响因子:1.3
- 作者:
Andreas Kyprianou;Victor Rivero;Batı Şengül;Ting Yang - 通讯作者:
Ting Yang
Andreas Kyprianou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Kyprianou', 18)}}的其他基金
Random fragmentation-coalescence processes out of equilibrium
随机分裂-聚结过程失去平衡
- 批准号:
EP/S036202/2 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/2 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/1 - 财政年份:2022
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Random fragmentation-coalescence processes out of equilibrium
随机分裂-聚结过程失去平衡
- 批准号:
EP/S036202/1 - 财政年份:2020
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Stochastic analysis of the neutron transport equation and applications to nuclear safety
中子输运方程的随机分析及其在核安全中的应用
- 批准号:
EP/P009220/1 - 财政年份:2017
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Real-valued self-similar Markov processes and their applications
实值自相似马尔可夫过程及其应用
- 批准号:
EP/L002442/1 - 财政年份:2014
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Self-similarity and stable processes
自相似性和稳定过程
- 批准号:
EP/M001784/1 - 财政年份:2014
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
L\'evy processes optimal stopping problems and stochastic games
Levy 处理最优停止问题和随机博弈
- 批准号:
EP/D045460/1 - 财政年份:2007
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
Random walks and branching processes in random environments under Spitzer's condition
斯皮策条件下随机环境中的随机游走和分支过程
- 批准号:
EP/D064988/1 - 财政年份:2006
- 资助金额:
$ 1.05万 - 项目类别:
Research Grant
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Field-scale quantification of dynamic physical properties in shrink-swell soils for improved hydrological prediction
职业:对收缩膨胀土壤的动态物理特性进行现场规模量化,以改进水文预测
- 批准号:
2337711 - 财政年份:2024
- 资助金额:
$ 1.05万 - 项目类别:
Continuing Grant
Experimental investigation on contribution of local heat flow and local material properties to thermoelectric performance in a macroscopic scale
宏观尺度局部热流和局部材料特性对热电性能贡献的实验研究
- 批准号:
23H01854 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Laryngotracheal Reconstruction with Engineered Cartilage
用工程软骨重建喉气管
- 批准号:
10660455 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Determining the molecular mechanisms of HIV-1 maturation
确定 HIV-1 成熟的分子机制
- 批准号:
10750083 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Architecture, dynamics and regulation of erythrocyte ankyrin-1 complexes
红细胞ankyrin-1复合物的结构、动力学和调节
- 批准号:
10638440 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Continuing Grant
Investigating contributions of late endosomal and lysosomal chloride/proton antiporter dysfunction to neuronal storage
研究晚期内体和溶酶体氯化物/质子逆向转运蛋白功能障碍对神经元储存的影响
- 批准号:
10649149 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:














{{item.name}}会员




