Random walks and branching processes in random environments under Spitzer's condition
斯皮策条件下随机环境中的随机游走和分支过程
基本信息
- 批准号:EP/D064988/1
- 负责人:
- 金额:$ 2.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random walks and branching processes form two fundamental cornerstones of the theory ofstochastic processes. The first models the evolution of a randomly moving particle in discrete time and the second (in its most basic form) modelsthe evolution in discrete time of an asexually reproducing population.There are many intimate relationships between these two classes of processes. In particular via path transformations and/or limit theorems.This makes them very attractive mathematical objects in which the interactive phenomena that occur between them has often provided a platform for the development of much deeper and generic mathematical objects of study which themselves lead on to a number of mathematical applications. The current proposal aims at funding a two month visit of one of the leading experts in the field of branching processes, Prof. V. Vatutin, with a view to two main objectives.1. Establishing new results concerning random walks whose probabilistic transitions are governed by a mathematical mechanism whichitself is randomised (the so called random walk in random environment) by drawing conclusions frombranching processes in random environments and vice versa.2. In light of the creation of the new Maxwell Institute for Mathematical Sciences, Prof. Vatutin will give a special lecture course on modern aspects of classical branching processes (including branching processes in random environment and application of branching processes to study queueing systems and some problems inpopulation biology).
随机游动和分枝过程构成了随机过程理论的两个基本基石。第一类模拟离散时间内随机运动粒子的演化,第二类(以其最基本的形式)模拟离散时间内无性繁殖种群的演化。这两类过程之间有许多密切的关系。特别是通过路径变换和/或极限定理。这使得它们成为非常吸引人的数学对象,其中在它们之间发生的交互现象通常为开发更深层次和更一般的数学研究对象提供了平台,这些研究对象本身导致了许多数学应用。目前的提议旨在资助分支程序领域的一位主要专家V.Vatutin教授进行为期两个月的访问,以期实现两个主要目标1。通过从随机环境中的分支过程得出结论,建立关于随机行走的新结果,该随机行走的概率转变由一种数学机制管理,该数学机制本身是随机化的(随机环境中的所谓的随机行走),反之亦然。鉴于麦克斯韦数学科学研究所的成立,Vatutin教授将就经典分支过程的现代方面(包括随机环境中的分支过程以及分支过程在研究排队系统和种群生物学中的一些问题的应用)进行专题讲座。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Kyprianou其他文献
Small Airway Disease, Air Trapping and Airways Responsiveness in Patients With Primary Pulmonary Hypertensio
- DOI:
10.1378/chest.124.4_meetingabstracts.222s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Andreas Kyprianou;Darrin London;Maria Padilla;N. Kohn;Al Quinones;Steven Feinsilver;Alan Fein;X Arunabh - 通讯作者:
X Arunabh
Extreme Supervised Algorithm for Day Ahead Market Price Forecasting
用于日前市场价格预测的极端监督算法
- DOI:
10.1109/isc257844.2023.10293566 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stylianos Loizidis;S. Theocharides;V. Venizelou;Demetris Evagorou;G. Makrides;Andreas Kyprianou;G. Georghiou - 通讯作者:
G. Georghiou
Utility of Centrifugation Lysis Blood Cultures in the Diagnosis of Mycobacteria Tuberculosis in HIV Patients: Association With CD4 Counts <50 cells/mm
- DOI:
10.1378/chest.124.4_meetingabstracts.114s-b - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
M. Desruisseaux;Andreas Kyprianou;M.H. Kaplan;A.M. Fein;X. Arunabh - 通讯作者:
X. Arunabh
A stochastic optimisation framework for integrating photovoltaic systems, heat pumps, and energy storage in buildings
- DOI:
10.1016/j.applthermaleng.2025.127312 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:6.900
- 作者:
Andreas V. Olympios;Matthias Mersch;Fanourios Kourougianni;Christos N. Markides;Antonio M. Pantaleo;Andreas Kyprianou;George E. Georghiou - 通讯作者:
George E. Georghiou
Entrance laws at the origin of self-similar Markov processes in high dimensions
高维自相似马尔可夫过程起源的入口定律
- DOI:
10.1090/tran/8086 - 发表时间:
2018-12 - 期刊:
- 影响因子:1.3
- 作者:
Andreas Kyprianou;Victor Rivero;Batı Şengül;Ting Yang - 通讯作者:
Ting Yang
Andreas Kyprianou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Kyprianou', 18)}}的其他基金
Random fragmentation-coalescence processes out of equilibrium
随机分裂-聚结过程失去平衡
- 批准号:
EP/S036202/2 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/2 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/1 - 财政年份:2022
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Random fragmentation-coalescence processes out of equilibrium
随机分裂-聚结过程失去平衡
- 批准号:
EP/S036202/1 - 财政年份:2020
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Stochastic analysis of the neutron transport equation and applications to nuclear safety
中子输运方程的随机分析及其在核安全中的应用
- 批准号:
EP/P009220/1 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Real-valued self-similar Markov processes and their applications
实值自相似马尔可夫过程及其应用
- 批准号:
EP/L002442/1 - 财政年份:2014
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Self-similarity and stable processes
自相似性和稳定过程
- 批准号:
EP/M001784/1 - 财政年份:2014
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Analytical properties of scale functions
尺度函数的分析性质
- 批准号:
EP/E047025/1 - 财政年份:2007
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
L\'evy processes optimal stopping problems and stochastic games
Levy 处理最优停止问题和随机博弈
- 批准号:
EP/D045460/1 - 财政年份:2007
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
相似海外基金
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
- 批准号:
EP/W022923/1 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
- 批准号:
23K16840 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
RUI: Boundary and entropy of random walks on groups
RUI:群体随机游走的边界和熵
- 批准号:
2246727 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Limit theorem for quantum walks interacting with environment
量子行走与环境相互作用的极限定理
- 批准号:
23K03229 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists