Writing with Lightning (Resubmission)

用闪电写作(重新提交)

基本信息

  • 批准号:
    EP/E050271/1
  • 负责人:
  • 金额:
    $ 65.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

We have become accustomed to rapid advancements in computing power, and these have resulted from relentless advances in manufacturing technology that have enabled year-on-year reductions in the sizes of electronic components in integrated circuits to continue unabated for forty years. However, such advances in miniaturisation are potentially not restricted simply to computers, but may reach into many areas of life, including medicine. For example, the determination of the human genome, the complete set of genetic words from which the description of a human being is written, has recently been completed. While this is a great achievement, we do not understand the language that these words speak / how do they instruct cells to behave the way they do, to produce proteins with particular structures and functions? How are they related to disease and ageing? New technologies based on miniaturised devices have a critical role to plan in advancing our understanding. Such devices can provide rapid methods for the interrogation of huge sets of data. One of our goals is to develop a zepto-array , a system based on an array of nanoscale spots of biological molecules that could be used to analyse biological specimens with a sensitivity of better than 600 molecules, a million times better than any existing technology.The extension of miniaturisation into such areas, loosely described as molecular nanoscience, raises new and demanding challenges. The patterning techniques that have been developed so effectively for electronic device manufacture are harder to apply to molecular materials. A major challenge in all such miniaturisation techniques is the lack of techniques that enable the control of molecular structure from the level of a single molecule up to about the current limit of commercial device fabrication methods, 100 nm. In this critical length scale there is no technique capable of routinely manipulating molecular structure with a resolution comparable to that of a single macromolecule. The objective of this project is to develop just such a technique.We will achieve this ambitious objective by exploiting, in combination, several recent advances and integrating them with new and sophisticated chemistries. When light is forced to go through very small holes, it diffracts, no longer forming a well-defined illumination. However, by working in the near-field , with the hole very close to a solid surface, this problem can be avoided. Recently we showed that we could write very small structures by using near-field light sources and a suitable photosensitive material. These structures were nearly as small as a single protein molecule. It has recently been found that very small spots may be illuminated by using a metal tip held very close to a surface and shining light on it. The illuminated area may be even smaller than when an aperture is used. However, this has not been explored as a tool for patterning molecules. We will test this here. Light is made up of photons, tiny particles. Some optical processes require the absorption of two photons at once, and these have a very sharp dependence on the light intensity. By combining these processes with the use of a metal tip to cause the illumination of the sample, we believe that we can confine the patterning process even further still. If we are successful, we will have developed a new method for doing chemistry with both exquisite chemical selectivity and unparalleled spatial resolution.
我们已经习惯了计算能力的快速进步,而这些进步是制造技术不断进步的结果,使得集成电路中电子元件的尺寸在四十年来持续不断地逐年减小。然而,小型化方面的进步可能不仅仅局限于计算机,还可能涉及到生活的许多领域,包括医学。例如,人类基因组(用于描述人类的完整基因词集)的确定最近已经完成。虽然这是一项伟大的成就,但我们不明白这些词所说的语言/它们如何指导细胞按照它们的方式行事,以产生具有特定结构和功能的蛋白质?它们与疾病和衰老有何关系?基于小型化设备的新技术在推进我们的理解方面发挥着至关重要的作用。此类设备可以提供用于询问大量数据的快速方法。我们的目标之一是开发 zepto 阵列,这是一种基于生物分子纳米级点阵列的系统,可用于分析生物样本,其灵敏度优于 600 个分子,比任何现有技术好一百万倍。将微型化扩展到这些领域(大致称为分子纳米科学)提出了新的艰巨挑战。为电子设备制造而有效开发的图案化技术很难应用于分子材料。所有此类小型化技术的一个主要挑战是缺乏能够控制分子结构的技术,从单分子水平到商业器件制造方法的当前极限(100 nm)。在这个临界长度范围内,没有任何技术能够以与单个大分子相当的分辨率常规地操纵分子结构。该项目的目标就是开发这样一种技术。我们将通过结合利用多项最新进展并将其与新的复杂化学物质相结合来实现这一雄心勃勃的目标。当光被迫穿过非常小的孔时,它会发生衍射,不再形成清晰的照明。然而,通过在近场工作,使孔非常接近固体表面,可以避免这个问题。最近我们表明,我们可以通过使用近场光源和合适的光敏材料来写入非常小的结构。这些结构几乎与单个蛋白质分子一样小。最近发现,通过使用非常靠近表面的金属尖端并向其照射光,可以照亮非常小的斑点。照明区域甚至可能比使用光圈时更小。然而,这还没有被探索作为分子图案化的工具。我们将在这里测试这一点。光是由光子、微小粒子组成的。一些光学过程需要同时吸收两个光子,并且这些过程对光强度具有非常强烈的依赖性​​。通过将这些过程与使用金属尖端来照明样品相结合,我们相信我们可以进一步限制图案化过程。如果我们成功了,我们将开发出一种新的化学方法,具有精湛的化学选择性和无与伦比的空间分辨率。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast, simple, combinatorial routes to the fabrication of reusable, plasmonically active gold nanostructures by interferometric lithography of self-assembled monolayers.
  • DOI:
    10.1021/nn5014319
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    A. Tsargorodska;Osama el Zubir;Brice Darroch;M. Cartron;T. Basova;C. Neil Hunter;Alexei V. Nabok;Graham J Leggett
  • 通讯作者:
    A. Tsargorodska;Osama el Zubir;Brice Darroch;M. Cartron;T. Basova;C. Neil Hunter;Alexei V. Nabok;Graham J Leggett
Photocatalytic nanolithography of self-assembled monolayers and proteins.
自组装单层和蛋白质的光催化纳米光刻。
  • DOI:
    10.1021/nn402063b
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Ul-Haq E
  • 通讯作者:
    Ul-Haq E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Leggett其他文献

Graham Leggett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Leggett', 18)}}的其他基金

Molecular Photonic Breadboards
分子光子面包板
  • 批准号:
    EP/T012455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant
From Molecules to Systems: Towards an Integrated Heuristic for Understanding the Physics of Life
从分子到系统:走向理解生命物理学​​的综合启发式
  • 批准号:
    EP/K000594/1
  • 财政年份:
    2012
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant
easyNanofab: Large Area Fabrication for Bionanotechnology, Plasmonics and Molecular Nanoscience
easyNanofab:生物纳米技术、等离子体学和分子纳米科学的大面积制造
  • 批准号:
    EP/H050132/1
  • 财政年份:
    2010
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant
Low-Dimensional Chemistry
低维化学
  • 批准号:
    EP/I012060/1
  • 财政年份:
    2010
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant
Mechanics of Nanoscale Single Asperity Contacts in Friction Force Microscopy
摩擦力显微镜中纳米级单粗糙体接触的力学
  • 批准号:
    EP/F039999/1
  • 财政年份:
    2008
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant

相似海外基金

Development of comprehensive estimation method of lightning risk of medium-voltage power distribution line
中压配电线路雷电风险综合评估方法开发
  • 批准号:
    23K03815
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Sudden Increase Lightning Activity Preceding Severe Wind Event Using a Meteorological Model with Bulk Lightning Scheme
使用带有大量闪电方案的气象模型研究强风事件前闪电活动的突然增加
  • 批准号:
    23KJ0037
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase I: Extremely Low Frequency Characterization of High-Risk Lightning
SBIR 第一阶段:高风险闪电的极低频特征
  • 批准号:
    2223166
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Initial Evaluation of Polarimetric Phased Array Radar for the Study of Storm Electrification and Lightning
合作研究:EAGER——用于风暴带电和闪电研究的偏振相控阵雷达的初步评估
  • 批准号:
    2310336
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Initial Evaluation of Polarimetric Phased Array Radar for the Study of Storm Electrification and Lightning
合作研究:EAGER——用于风暴带电和闪电研究的偏振相控阵雷达的初步评估
  • 批准号:
    2310337
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
Development of lightning forecast technology by using high-performance graphene electric-field sensors with single-V/m-level sensitivity
单V/m级灵敏度高性能石墨烯电场传感器开发闪电预报技术
  • 批准号:
    23H00256
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study on determining factors of high-energy Ippasturai (singel-stroke lightning) and development to its global climatology.
高能单击雷决定因素研究及其全球气候学发展.
  • 批准号:
    22K03715
  • 财政年份:
    2022
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultra-high-speed image-based technology for the study of lightning and lightning interactions
开发用于研究闪电和闪电相互作用的超高速图像技术
  • 批准号:
    2751179
  • 财政年份:
    2022
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Studentship
Development of a space environment monitoring system using lightning whistlers detected by microsatellite
利用微卫星探测到的闪电哨声的空间环境监测系统的研制
  • 批准号:
    22K19845
  • 财政年份:
    2022
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Multiparametric Analyses of Volcanic Aerosols and the Effects on Lightning Generation
合作研究:火山气溶胶的多参数分析及其对闪电产生的影响
  • 批准号:
    2151807
  • 财政年份:
    2022
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了