Molecular Photonic Breadboards
分子光子面包板
基本信息
- 批准号:EP/T012455/1
- 负责人:
- 金额:$ 924.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
New manufacturing methods are required if we are to live sustainably on the earth. In the electronics industry there is enormous interest in the possibility of manufacturing devices using organic materials: they can be manufactured sustainably from earth-abundant resources at energy costs that are typically significantly less than those associated with the production of equivalent inorganic materials. Electronic devices based on organic components are now readily available in the high street. For example, organic light-emitting diodes are used to produce the displays used in some high-end TV sets and in smartphones (e.g. iPhone X). However, a fundamental problem prevents the realisation of the full potential of organic materials in electronic devices. When light is absorbed by molecular semiconductors, it causes the creation of excitons - pairs of opposite charges - that carry excitation through the device. However, the excitons in organic materials recombine and cancel themselves out extremely rapidly - they can only move short distances through the material. This fundamental obstacle limits the application of organic materials in consumer electronics and also in many other areas of technology - in quantum communications, photocatalysis and sensor technologies.We propose an entirely new approach to solving this problem that is based on combining molecular designs inspired by photosynthetic mechanisms with nanostructured materials to produce surprising and intriguing quantum optical effects that mix the properties of light and matter.On breadboards, threaded mounts hold optical components relative to one another so that rays of light can be directed through an optical system. This proposal also aims to design breadboards, but of a very different kind. The smallest components will be single chromophores (light absorbing molecules), held at fixed arrangements in space by minimal building blocks called antenna complexes, whose structures are inspired by those of proteins involved in photosynthesis. Antenna complexes are designed and made from scratch using synthetic biology and chemistry so that transfer of energy can be controlled by programming the antenna structure. Instead of using threaded mounts, we will organise these components by attachment to reactive chemical groups formed on solid surfaces by nanolithography. In these excitonic films, we will develop design rules for efficient long-range transport.In conventional breadboards, light travels in straight lines between components. However, we will use the phenomenon of strong light-matter coupling to achieve entirely different types of energy transfer. In strong coupling, a localised plasmon resonance (an light mode confined to the surface of a nanoparticle) is hybridised with molecular excitons to create new states called plexcitons that combine the properties of light and matter. We will create plexcitonic complexes, in each of which an array of as many as a thousand chromophores is strongly coupled to a plasmon mode. In these plexcitonic complexes, the coupling is collective - all the chromophores couple to the plasmon simultaneously, and so the rules of energy transfer are completely re-written. Energy is no longer transferred via a series of linear hopping steps (as it is in organic semiconductors), but is delocalised instantaneously across the entire structure - many orders of magnitude further than is possible in conventional organic semiconductors. By designing these plexcitonic complexes from scratch we aim to create entirely new properties. The resulting materials are fully programmable from the scale of single chromophores to macroscopic structures.By combining biologically-inspired design with strong light-matter coupling we will create many new kinds of functional structures, including new medical sensors, 'plexcitonic circuits', and quantum optical films suitable for many applications, using low-cost, environmentally benign methods.
如果我们要在地球上可持续地生存,就需要新的制造方法。在电子行业,人们对使用有机材料制造设备的可能性非常感兴趣:它们可以从地球上丰富的资源中可持续地制造出来,能源成本通常比生产同等无机材料的成本低得多。基于有机元件的电子设备现在在商业街上随处可见。例如,有机发光二极管被用来生产用于一些高端电视机和智能手机(如iPhone X)的显示器。然而,一个根本的问题阻碍了有机材料在电子设备中的全部潜力的实现。当光被分子半导体吸收时,它会产生激子--一对相反的电荷--通过设备进行激发。然而,有机材料中的激子重新组合并以极快的速度抵消-它们只能在材料中短距离移动。这一根本性的障碍限制了有机材料在消费电子产品以及许多其他技术领域的应用--量子通信、光催化和传感器技术。我们提出了一种全新的解决方法,该方法基于光合作用机制启发的分子设计与纳米结构材料相结合,产生令人惊讶和有趣的量子光学效果,将光和物质的特性结合在一起。在面包板上,螺纹座固定光学元件彼此相对,以便光线可以通过光学系统引导。这项提案也旨在设计面包板,但却是一种非常不同的东西。最小的组成部分将是单个发色团(光吸收分子),由被称为天线复合体的最小构件在空间中固定排列,其结构的灵感来自参与光合作用的蛋白质的结构。天线复合体是利用合成生物学和化学从头开始设计和制造的,因此可以通过对天线结构进行编程来控制能量的传递。我们将通过纳米光刻技术在固体表面形成活性化学基团来组织这些组件,而不是使用螺纹座。在这些激子薄膜中,我们将制定有效的长距离传输的设计规则。在传统的电路板中,光在组件之间沿直线传播。然而,我们将利用光-物质强烈耦合的现象来实现完全不同类型的能量转移。在强耦合中,局域等离子体共振(一种局限于纳米颗粒表面的光模式)与分子激子杂交,产生一种新的状态,称为plexiton,它结合了光和物质的性质。我们将创建激子复合体,在每个复合体中,多达一千个生色团的阵列与等离子激元模式强烈耦合。在这些激子复合体中,耦合是集体的--所有生色团同时耦合到等离子激子,因此能量转移规则被完全改写。能量不再通过一系列线性跳跃步骤(就像在有机半导体中那样)转移,而是瞬间在整个结构中离域--比传统有机半导体可能要远许多个数量级。通过从头开始设计这些激子复合体,我们的目标是创造出全新的性质。通过将生物启发的设计与强烈的光-物质耦合相结合,我们将创造许多新型的功能结构,包括新型医疗传感器、‘激子电路’和适用于许多应用的量子光学薄膜,使用低成本、环境友好的方法。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasonic Spray Deposition of a Passivating Agent for Spray-Coated, Methylammonium-Free Perovskite Solar Cells
用于喷涂无甲基铵钙钛矿太阳能电池的钝化剂的超声波喷涂沉积
- DOI:10.1002/solr.202300814
- 发表时间:2023
- 期刊:
- 影响因子:7.9
- 作者:Cassella E
- 通讯作者:Cassella E
Rationally seeded computational protein design
合理播种的计算蛋白质设计
- DOI:10.1101/2023.08.25.554789
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Albanese K
- 通讯作者:Albanese K
Direct Integration of Perovskite Solar Cells with Carbon Fiber Substrates
钙钛矿太阳能电池与碳纤维基板的直接集成
- DOI:10.1002/adma.202209950
- 发表时间:2023
- 期刊:
- 影响因子:29.4
- 作者:Game O
- 通讯作者:Game O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Leggett其他文献
Graham Leggett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Leggett', 18)}}的其他基金
From Molecules to Systems: Towards an Integrated Heuristic for Understanding the Physics of Life
从分子到系统:走向理解生命物理学的综合启发式
- 批准号:
EP/K000594/1 - 财政年份:2012
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
easyNanofab: Large Area Fabrication for Bionanotechnology, Plasmonics and Molecular Nanoscience
easyNanofab:生物纳米技术、等离子体学和分子纳米科学的大面积制造
- 批准号:
EP/H050132/1 - 财政年份:2010
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
Mechanics of Nanoscale Single Asperity Contacts in Friction Force Microscopy
摩擦力显微镜中纳米级单粗糙体接触的力学
- 批准号:
EP/F039999/1 - 财政年份:2008
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
Writing with Lightning (Resubmission)
用闪电写作(重新提交)
- 批准号:
EP/E050271/1 - 财政年份:2007
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
相似海外基金
CAREER: Melting-free Photonic Memory with Layered Chalcogenide Materials
职业:采用层状硫族化物材料的免熔化光子存储器
- 批准号:
2338546 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Continuing Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Continuing Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
- 批准号:
2310284 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Continuing Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
STREAM 2: A placed-based IAA in Photonic Technologies in Scotland's Central Belt
STREAM 2:苏格兰中央地带光子技术领域的基于位置的 IAA
- 批准号:
EP/Y024109/1 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
CIRCULIGHT - Circulating Light on any Photonic Platform
CIRCULIGHT - 在任何光子平台上循环光
- 批准号:
10108367 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
EU-Funded
Photonic Integrated Modulators for Aerospace and Data/Telecom
用于航空航天和数据/电信的光子集成调制器
- 批准号:
EP/X011917/1 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
Effects of sub-wavelength photonic nanostructures on thermally-activated delayed fluorescence
亚波长光子纳米结构对热激活延迟荧光的影响
- 批准号:
EP/Y021495/1 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
- 批准号:
2344415 - 财政年份:2024
- 资助金额:
$ 924.47万 - 项目类别:
Standard Grant