From Molecules to Systems: Towards an Integrated Heuristic for Understanding the Physics of Life
从分子到系统:走向理解生命物理学的综合启发式
基本信息
- 批准号:EP/K000594/1
- 负责人:
- 金额:$ 31.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last fifty years have seen enormous strides in our understanding of biology at the most basic level, the molecular scale. For example, the structure of DNA has been discovered, and the genetic information encoded in its structure has begun to be worked out. We know that many biological molecules are associated with particular types of behaviour in larger organisms: for example some people have a genetic predisposition to particular diseases. However, understanding the complex links in the chain between a single molecule inside a cell and the behaviour of a person is a very difficult challenge. We can focus in on individual molecules and understand their structures and behaviour in great detail, but every human body contains vast numbers of molecules of many different types, and the challenge is to try to put together the complex systems of interactions between molecules that go on inside each cell; the relationships between cells that lead to the function of tissue; and the way that tissues and organs are integrated into a whole person. When a person discovers they have cancer, for example, there is a strong chance that the disease began with a change in a single molecule; but this will have initiated a staggeringly complex cascade of knock-on chains of cause-and-effect that led to the formation of the disease, and modern epigenetics is also suggesting that a complex chain of cause-and-effect may very well have preceded that initial change. Untangling this web of interactions is an enormous challenge but it is undoubtedly the most important problem facing biology at present.It is clear that biological systems function on different length scales (molecules/cells/tissues/people) and the challenge is to integrate understanding across the length scales. The ways that biologists think about molecules are very different from the ways that they think about ecosystems, for example, even though a molecular event can trigger a change in an ecosystem. Physics has been addressing the problem of integrating across length scales for many years. At the most extreme, quantum gravity tries to integrate the laws of quantum mechanics (which deals with the smallest building blocks of matter) and general relativity (which describes the behaviour of planets, stars and galaxies). Importantly, physicists have been thinking about detail and also how to integrate across length scales to develop a picture of very large systems. We believe that this gives physicists unique insights that may potentially help biologists to integrate their thinking across the length scales too. The goal of this Network proposal is to stimulate engagement between physicists and biologists to tackle this important challenge together.The Network will provide a range of activities designed to help physicists and biologists build new partnerships devoted to finding a framework to understand biology across the length scales. Three initial events will focus on key challenges (How do many molecules come together to form a living cell? Can we build synthetic systems that replicate cell behaviour and allow us to understand how the integration from molecules to cells functions? How do many cells work together in tissue, biofilm or other forms?) Following these initial events a series of activities will be developed to provide the means of bringing leading physicists and biologists together to address the important challenges identified.Our goal will be to provide a framework from within which physicists and biologists can work together to understand biology across the length scales. The rewards for this effort are many, including the development of a better understanding of disease (for example, cancer), ecosystems and the environment, photosynthesis and biological energy harvesting, biotechnology and biofilms. Inevitably this will contribute substantially to the many bioscience-related industries in the UK and to the health and quality of life of its citizens.
在过去的五十年里,我们对生物学最基本水平(分子尺度)的理解取得了巨大进步。例如,DNA的结构已经被发现,其结构中编码的遗传信息也已开始被研究出来。我们知道,许多生物分子与大型生物体的特定类型行为相关:例如,有些人具有患特定疾病的遗传倾向。然而,了解细胞内单个分子与人的行为之间的复杂链条是一个非常困难的挑战。我们可以专注于单个分子并详细了解它们的结构和行为,但每个人体都包含大量不同类型的分子,挑战在于尝试将每个细胞内发生的分子之间相互作用的复杂系统组合在一起;导致组织功能的细胞之间的关系;以及组织和器官整合成一个完整人的方式。例如,当一个人发现自己患有癌症时,这种疾病很可能始于单个分子的变化;但这将引发一系列极其复杂的因果链连锁反应,最终导致疾病的形成,而现代表观遗传学也表明,复杂的因果链很可能先于最初的变化。理清这种相互作用的网络是一个巨大的挑战,但这无疑是目前生物学面临的最重要的问题。很明显,生物系统在不同的长度尺度(分子/细胞/组织/人)上发挥作用,挑战是整合跨长度尺度的理解。例如,生物学家思考分子的方式与他们思考生态系统的方式非常不同,尽管分子事件可以引发生态系统的变化。多年来,物理学一直在解决跨长度尺度的积分问题。在最极端的情况下,量子引力试图整合量子力学定律(涉及物质的最小组成部分)和广义相对论(描述行星、恒星和星系的行为)。重要的是,物理学家一直在思考细节以及如何跨长度尺度进行整合以绘制非常大系统的图景。我们相信,这为物理学家提供了独特的见解,也可能帮助生物学家在长度尺度上整合他们的思维。该网络提案的目标是促进物理学家和生物学家之间的接触,共同应对这一重要挑战。该网络将提供一系列活动,旨在帮助物理学家和生物学家建立新的伙伴关系,致力于寻找一个框架来理解跨长度尺度的生物学。三个初始活动将重点关注关键挑战(许多分子如何聚集在一起形成活细胞?我们能否构建复制细胞行为的合成系统,并让我们了解从分子到细胞的整合如何发挥作用?许多细胞如何以组织、生物膜或其他形式一起工作?)在这些初始活动之后,将开展一系列活动,以提供将领先的物理学家和生物学家聚集在一起解决已确定的重要挑战的方法。我们的目标是提供 物理学家和生物学家可以在这个框架内共同努力来理解跨长度尺度的生物学。这项努力的回报很多,包括加深对疾病(例如癌症)、生态系统和环境、光合作用和生物能量收集、生物技术和生物膜的了解。这不可避免地会对英国许多生物科学相关产业及其公民的健康和生活质量做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Leggett其他文献
Graham Leggett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Leggett', 18)}}的其他基金
easyNanofab: Large Area Fabrication for Bionanotechnology, Plasmonics and Molecular Nanoscience
easyNanofab:生物纳米技术、等离子体学和分子纳米科学的大面积制造
- 批准号:
EP/H050132/1 - 财政年份:2010
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
Mechanics of Nanoscale Single Asperity Contacts in Friction Force Microscopy
摩擦力显微镜中纳米级单粗糙体接触的力学
- 批准号:
EP/F039999/1 - 财政年份:2008
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
Writing with Lightning (Resubmission)
用闪电写作(重新提交)
- 批准号:
EP/E050271/1 - 财政年份:2007
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
Towards innovative and affordable sodium- and zinc-based energy storage systems based on more sustainable and locally-sourced materials (eNargiZinc)
开发基于更可持续和本地采购的材料的创新且经济实惠的钠基和锌基储能系统 (eNargiZinc)
- 批准号:
EP/Y03127X/1 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
Towards a real implementation of quantum network systems
迈向量子网络系统的真正实现
- 批准号:
24K07485 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TROCI: Towards Resilient Operation of Critical Infrastructures - application to water and energy systems
TROCI:实现关键基础设施的弹性运行 - 在水和能源系统中的应用
- 批准号:
EP/Y036344/1 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant
CAREER: Towards Grid-Responsive Electrified Transportation Systems: Modeling, Aggregation, and Market Integration
职业:迈向电网响应式电气化运输系统:建模、聚合和市场整合
- 批准号:
2339803 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
- 批准号:
2350184 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
- 批准号:
2336189 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Continuing Grant
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
- 批准号:
2347426 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Standard Grant
Towards innovative and affordable sodium- and zinc-based energy storage systems based on more sustainable and locally-sourced materials
开发基于更可持续和本地采购的材料的创新且经济实惠的钠基和锌基储能系统
- 批准号:
EP/Y031253/1 - 财政年份:2024
- 资助金额:
$ 31.48万 - 项目类别:
Research Grant