A Multiscale Framework for Forecasting Highway Traffic Flow

预测公路交通流量的多尺度框架

基本信息

  • 批准号:
    EP/E055567/1
  • 负责人:
  • 金额:
    $ 76.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Traffic jams are an annoying feature of everyday life. They also hamper our economy: the CBI has estimated that delays due to road traffic congestion cost UK businesses up to 20 billion annually. UK road traffic is forecast to grow by 30% in the period 2000-2015, so it seems that the congestion problem can only get worse. There is consequently an intense international effort in using Information and Communication Technologies to manage traffic in order to alleviate congestion --- this broad area is known as Intelligent Transport Systems (ITS). Regular motorway drivers will already be familiar with ITS. Examples include 1. the Controlled Motorways project on the M25 London Orbital (which sets temporary reduced speed limits when the traffic gets heavy); 2. Active Traffic Management on Birmingham's M42 (where the hard-shoulder becomes an ordinary running lane in busy periods); and 3. The `Queue Ahead'warning signs which are now almost ubiquitous on the English motorway network. The investment in this telematics infrastructure has been very significant --- about 100 million pounds for Active Traffic Management alone.Each of the ITS applications described above has at its heart detailed mathematical and computer models that forecast how traffic flows and how queues build up and dissipate. However, these models are far from perfect, and the purpose of this research is to improve the models by working on the fundamental science that underpins them. This a so-called multiscale challenge, since there is a whole hierarchy of models of different levels of detail, ranging from simulation models that model the behaviour of individual drivers, up to macroscopic models that draw an analogy between the flow of traffic and compressible gas. This research will establish methods for finding out which models are good and which ones are bad. Moreover, it will use modern `machine learning' techniques to combine good models so that computer-based traffic forecasting has human-like artificial intelligence.
交通堵塞是日常生活中令人烦恼的一件事。它们还阻碍了我们的经济:英国工业联合会估计,由于道路交通拥堵造成的延误每年给英国企业造成高达200亿英镑的损失。英国的道路交通量预计在2000-2015年期间将增长30%,因此拥堵问题似乎只会变得更糟。因此,国际上都在努力利用信息和通信技术来管理交通,以减轻拥挤-这一广泛的领域被称为智能交通系统(ITS)。普通的高速公路司机已经熟悉ITS了。示例包括1. M25伦敦轨道上的受控高速公路项目(在交通繁忙时设置临时降低的速度限制); 2.伯明翰M42公路的主动交通管理(在忙碌时段,路肩变成普通的行车道);以及3.现在在英国高速公路网上几乎无处不在的“前方排队”警告标志。在这种远程信息处理基础设施上的投资是非常重要的-仅主动交通管理就大约有1亿英镑。上面描述的每一种ITS应用程序的核心都有详细的数学和计算机模型,可以预测交通流量以及排队的建立和消散。然而,这些模型远非完美,这项研究的目的是通过研究支撑它们的基础科学来改进模型。这是一个所谓的多尺度挑战,因为有一个完整的层次结构的模型的不同层次的细节,从模拟模型的行为,个别司机,宏观模型之间的交通流和可压缩气体的类比。这项研究将建立方法,找出哪些模型是好的,哪些是坏的。此外,它还将利用现代“机器学习”技术,将联合收割机的良好模式结合起来,使计算机交通预测具有类似人类的人工智能。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Criteria for convective versus absolute string instability in car-following models
Number of Lane Changes Determined by Splashover Effects in Loop Detector Counts
Techniques for the inference of mileage rates from MOT data
从 MOT 数据推断里程率的技术
On the estimation of temporal mileage rates
关于时间里程率的估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Wilson其他文献

THE CROSS SECTION FOR PHOTO-DISINTEGRATION OF THE DEUTERON AT LOW ENERGIES
低能氘核光分解的横截面
  • DOI:
  • 发表时间:
    1950
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bishop;C. Collie;H. Halban;A. Hedgran;K. Siegbahn;S. D. Toit;Richard Wilson
  • 通讯作者:
    Richard Wilson
A randomised double-blind placebo-controlled phase II study of AGI004 for control of chemotherapy-induced diarrhoea
AGI004 控制化疗引起的腹泻的随机双盲安慰剂对照 II 期研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Victoria Coyle;D. Lungulescu;C. Togănel;A. Niculescu;S. Pop;T. Ciuleanu;C. Cebotaru;J. Devane;M. Martin;Richard Wilson
  • 通讯作者:
    Richard Wilson
赤道大気レーダー観測に基づいた西スマトラ山岳域での下層風速場の違いによる対流活動の特徴について
基于赤道大气雷达观测的西苏门答腊山区低空风速场差异对流活动特征
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Hashiguchi;Momoko Hashino;Richard Wilson;Shinya Ogino;and Junko Suzuki;Hiroyuki Hashiguchi;橋口浩之・橋野桃子・Richard Wilson・荻野慎也・鈴木順子;橋口浩之・橋野桃子・Richard Wilson・荻野慎也・鈴木順子;H. Hashiguchi;柴垣佳明・橋口浩之・下舞豊志・山中大学
  • 通讯作者:
    柴垣佳明・橋口浩之・下舞豊志・山中大学
熱帯対流圏界層における乱流による混合の観測
热带对流层湍流混合的观测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Momoko Hashino;Hiroyuki Hashiguchi;Richard Wilson;Shinya Ogino;and Junko Suzuki;鈴木順子・荻野慎也・木下武也・城岡竜一・岩崎杉紀・米山邦夫;橋野桃子・橋口浩之・Richard Wilson・荻野慎也・鈴木順子
  • 通讯作者:
    橋野桃子・橋口浩之・Richard Wilson・荻野慎也・鈴木順子
YMC-BSM2018で観測されたインドシナ半島におけるオゾン変動
YMC-BSM2018观测到的中南半岛臭氧波动
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Momoko Hashino;Hiroyuki Hashiguchi;Richard Wilson;Shinya Ogino;and Junko Suzuki;鈴木順子・荻野慎也・木下武也・城岡竜一・岩崎杉紀・米山邦夫;橋野桃子・橋口浩之・Richard Wilson・荻野慎也・鈴木順子;荻野慎也・鈴木順子・木下武也・城岡竜一
  • 通讯作者:
    荻野慎也・鈴木順子・木下武也・城岡竜一

Richard Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Wilson', 18)}}的其他基金

On the nature and regulation of the plant-fungal biotrophic interface
植物-真菌生物营养界面的性质和调节
  • 批准号:
    2106153
  • 财政年份:
    2022
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Standard Grant
CAREER: Superdiffusive Heat Transfer in Nanoscale Metal Multilayers
职业:纳米级金属多层中的超扩散传热
  • 批准号:
    1847632
  • 财政年份:
    2019
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Standard Grant
Molecular mechanisms integrating fungal growth with plant innate immunity suppression
真菌生长与植物先天免疫抑制相结合的分子机制
  • 批准号:
    1758805
  • 财政年份:
    2019
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Continuing Grant
Molecular Mechanisms Connecting Plant Defense Suppression with Magnaporthe oryzae Growth in Rice Cells
水稻细胞中植物防御抑制与稻瘟病菌生长的分子机制
  • 批准号:
    1557943
  • 财政年份:
    2016
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Continuing Grant
Conjugate Plane Photometry: Reducing Scintillation Noise in Ground-Based Astronomical Photometry
共轭平面光度测定:减少地基天文光度测定中的闪烁噪声
  • 批准号:
    ST/J001236/1
  • 财政年份:
    2012
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Research Grant
Pathogenic Gene Discovery and Elucidation of Genetic Regulatory Networks in the Rice Blast Fungus
稻瘟病菌致病基因的发现和遗传调控网络的阐明
  • 批准号:
    1145347
  • 财政年份:
    2012
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Continuing Grant
A Multiscale Framework for Forecasting Highway Traffic Flow
预测公路交通流量的多尺度框架
  • 批准号:
    EP/E055567/2
  • 财政年份:
    2010
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Fellowship
Improving the Sequence of the Maize Genome
改进玉米基因组的序列
  • 批准号:
    0910642
  • 财政年份:
    2009
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Improvement Grant: Evaluating Retributive Justice in Croatia
博士论文改进补助金:评估克罗地亚的报应性正义
  • 批准号:
    0851064
  • 财政年份:
    2009
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Standard Grant
Development of an integrated ELT-capable adaptive optics simulation facility
开发具有 ELT 功能的集成自适应光学模拟设施
  • 批准号:
    PP/E007570/1
  • 财政年份:
    2007
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Research Grant

相似海外基金

Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Machine-Cast: A scalable machine learning framework for forecasting risk of crop pests and pathogens
Machine-Cast:用于预测农作物病虫害和病原体风险的可扩展机器学习框架
  • 批准号:
    10005703
  • 财政年份:
    2021
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Collaborative R&D
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10155407
  • 财政年份:
    2020
  • 资助金额:
    $ 76.8万
  • 项目类别:
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10598075
  • 财政年份:
    2020
  • 资助金额:
    $ 76.8万
  • 项目类别:
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    9927071
  • 财政年份:
    2020
  • 资助金额:
    $ 76.8万
  • 项目类别:
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10402263
  • 财政年份:
    2020
  • 资助金额:
    $ 76.8万
  • 项目类别:
Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale
合作研究:RUI:脉冲分流概念:在宏观系统尺度上量化和预测分水岭 DOM 通量和变换的概念框架
  • 批准号:
    1824613
  • 财政年份:
    2017
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Standard Grant
An ensemble learning framework for long-term flood forecasting
长期洪水预报的集成学习框架
  • 批准号:
    516105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 76.8万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了