Copy of A Monte-Carlo diffusion simulation framework for diffusion MRI
用于扩散 MRI 的蒙特卡罗扩散模拟框架的副本
基本信息
- 批准号:EP/E064280/1
- 负责人:
- 金额:$ 50.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diffusion MRI measures the random thermal movement (diffusion) of water molecules within samples. The microstructure of the sample controls the scatter pattern of the particles within. Diffusion MRI allows us to measure this scatter pattern and thus to make inferences about the material microstructure. A major application is neuroimaging, because the brain contains different types of tissue with different microstructure and those microstructures can change during normal development or in disease. Changes in tissue microstructure are one of the earliest signs of disease. Thus diffusion MRI, which is completely non-invasive, has the potential to provide the early-warning systems of the future for degenerative brain diseases, such as dementia and multiple sclerosis. Another application of diffusion MRI within neuroimaging is connectivity mapping. White matter in the brain consists of bundles of axon fibres; it is the electrical cabling that connects different brain regions. Water molecules move further along fibres than across them, because they cannot pass through the fibre walls. From diffusion MRI measurements, we can determine the direction in which particles scatter most. Those directions provide an estimate of the fibre direction at every point in a 3D brain image. Tractography algorithms then reconstruct global fibre trajectories by following fibre-direction estimates from point to point through the image and thus reveal the connectivity of the brain.Only in the last decade has MRI scanner technology reached the point where we can perform diffusion MRI routinely on patients and start to exploit its full potential. The field is young; misconceptions are widespread and the limitations of the technique remain unclear even to the experts. Accurate simulations provide a mechanism for optimizing existing approaches and estimating their accuracy, testing and tuning new applications and exploring the limits of the technique's potential. This project will develop a general purpose simulation tool for diffusion MRI. We will create geometric models of tissue microstructure containing impermeable barriers that restrict water mobility. We can simulate particle diffusion within these models to approximate the measurements we expect from diffusion MRI. The project will also develop image-processing tools to construct geometric tissue models from high magnification microscope images that show the microstructure of brain tissue. Finally, we will demonstrate use of the system by addressing several outstanding questions in diffusion MRI. Specifically, we will use the geometric models and simulations to optimize diffusion MRI measurements, improve the accuracy of connectivity mapping and answer fundamental questions about the mechanisms that contribute to changes in diffusion MRI measurements that we observe during disease and normal brain activation and development.
扩散MRI测量样本内水分子的随机热运动(扩散)。样品的微观结构控制着内部颗粒的散射模式。扩散MRI使我们能够测量这种散射模式,从而对材料的微观结构进行推断。一个主要的应用是神经成像,因为大脑包含不同类型的组织,具有不同的微观结构,这些微观结构可以在正常发育或疾病期间发生变化。组织微结构的变化是疾病的最早迹象之一。因此,完全非侵入性的扩散MRI有可能为痴呆症和多发性硬化症等退行性脑部疾病提供未来的预警系统。扩散MRI在神经成像中的另一个应用是连接映射。大脑中的白色物质由成束的轴突纤维组成;它是连接不同大脑区域的电线。水分子沿纤维沿着移动的距离要远于穿过纤维的距离,因为它们不能穿过纤维壁。通过扩散MRI测量,我们可以确定粒子散射最多的方向。这些方向提供了对3D大脑图像中每个点的纤维方向的估计。纤维束成像算法随后通过在图像中逐点跟踪纤维方向估计来重建全局纤维轨迹,从而揭示大脑的连通性。直到最近十年,MRI扫描仪技术才达到我们可以对患者进行常规弥散MRI的程度,并开始充分利用其潜力。该领域是年轻的;误解是普遍的,该技术的局限性仍然不清楚,即使是专家。精确的模拟提供了一种机制,用于优化现有方法并估计其准确性,测试和调整新应用程序以及探索该技术潜力的极限。该项目将开发一种用于扩散MRI的通用模拟工具。我们将创建组织微观结构的几何模型,其中包含限制水流动性的不可渗透屏障。我们可以在这些模型中模拟粒子扩散,以近似我们期望从扩散MRI获得的测量结果。该项目还将开发图像处理工具,从显示脑组织微观结构的高倍显微镜图像中构建几何组织模型。最后,我们将通过解决弥散MRI中的几个突出问题来演示该系统的使用。具体来说,我们将使用几何模型和模拟来优化弥散MRI测量,提高连接映射的准确性,并回答有关机制的基本问题,这些机制有助于我们在疾病和正常大脑激活和发育期间观察到的弥散MRI测量变化。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-fidelity meshes from tissue samples for diffusion MRI simulations.
用于扩散 MRI 模拟的组织样本的高保真网格。
- DOI:10.1007/978-3-642-15745-5_50
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Panagiotaki E
- 通讯作者:Panagiotaki E
Two-compartment models of the di usion MR signal in brain white matter
脑白质弥散 MR 信号的两室模型
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Anthony Price
- 通讯作者:Anthony Price
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Alexander其他文献
Fatal tumor lysis syndrome in a pediatric patient with acute lymphoblastic leukemia treated with venetoclax
接受维奈托克治疗的急性淋巴细胞白血病儿科患者出现致命性肿瘤溶解综合征
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
Sarah M Trinder;Johnathan Soggee;Jessica Spragg;Daniel Alexander;Richard Mitchell;Nick G Gottardo;Shanti Ramachandran - 通讯作者:
Shanti Ramachandran
2683: Measuring changes in the brain tumour micro-environment using microstructure MRI
2683:使用微结构MRI测量脑肿瘤微环境的变化
- DOI:
10.1016/s0167-8140(24)02851-2 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Najmus S. Iqbal;Marco Palombo;Derek K. Jones;Daniel Alexander;Elisenda Bonet-Carne;Laura Panagiotaki;John Staffurth;Emiliano Spezi;James R. Powell - 通讯作者:
James R. Powell
Can the performance of semi-inverted hydrocyclones be similar to fine screening?
- DOI:
10.1016/j.mineng.2019.106147 - 发表时间:
2020-01-15 - 期刊:
- 影响因子:
- 作者:
Vladimir Jokovic;Robert Morrison;Daniel Alexander - 通讯作者:
Daniel Alexander
Daniel Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Alexander', 18)}}的其他基金
Assessing Placental Structure and Function by Unified Fluid Mechanical Modelling and in-vivo MRI
通过统一流体力学模型和体内 MRI 评估胎盘结构和功能
- 批准号:
EP/V034537/1 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
JPND: Early Detection of Alzheimer's Disease Subtypes
JPND:阿尔茨海默病亚型的早期检测
- 批准号:
MR/T046422/1 - 财政年份:2020
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
JPND: Stratification of presymptomatic amyotrophic lateral sclerosis: the development of novel imaging biomarkers
JPND:症状前肌萎缩侧索硬化症的分层:新型影像生物标志物的开发
- 批准号:
MR/T046473/1 - 财政年份:2020
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Enabling Clinical Decisions From Low-power MRI In Developing Nations Through Image Quality Transfer
通过图像质量传输,在发展中国家利用低功率 MRI 做出临床决策
- 批准号:
EP/R014019/1 - 财政年份:2018
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Learning MRI and histology image mappings for cancer diagnosis and prognosis
学习 MRI 和组织学图像映射以进行癌症诊断和预后
- 批准号:
EP/R006032/1 - 财政年份:2017
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
A biophysical simulation framework for magnetic resonance microstructure imaging
磁共振微结构成像的生物物理模拟框架
- 批准号:
EP/N018702/1 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Medical image computing for next-generation healthcare technology
下一代医疗保健技术的医学图像计算
- 批准号:
EP/M020533/1 - 财政年份:2015
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Anatomy-Driven Brain Connectivity Mapping
解剖驱动的大脑连接图谱
- 批准号:
EP/L022680/1 - 财政年份:2014
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Computational models of neurodegenerative disease progression
神经退行性疾病进展的计算模型
- 批准号:
EP/J020990/1 - 财政年份:2013
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Direct Measurements of Microstructure from MRI
通过 MRI 直接测量微观结构
- 批准号:
EP/G007748/1 - 财政年份:2008
- 资助金额:
$ 50.8万 - 项目类别:
Fellowship
相似国自然基金
DDH头臼匹配性三维空间形态表征及PAO
手术髋臼重定向Monte Carlo随机最优控
制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂空间上具有特殊约束的Monte Carlo方法
- 批准号:12371269
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
- 批准号:21863010
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
间接优化的高效Monte Carlo声传播研究
- 批准号:61772458
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
- 批准号:51606049
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
- 批准号:41674076
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335904 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Transfer Learning for Monte Carlo Methods
蒙特卡罗方法的迁移学习
- 批准号:
EP/Y022300/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335905 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Innovating and Validating Scalable Monte Carlo Methods
创新和验证可扩展的蒙特卡罗方法
- 批准号:
DE240101190 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Discovery Early Career Researcher Award
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Examination of the phase behaviour of liquid crystal molecules in confined systems by Replica-Exchange Monte-Carlo simulations
通过复制交换蒙特卡罗模拟检查受限系统中液晶分子的相行为
- 批准号:
22KJ2724 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




