Enabling Clinical Decisions From Low-power MRI In Developing Nations Through Image Quality Transfer

通过图像质量传输,在发展中国家利用低功率 MRI 做出临床决策

基本信息

  • 批准号:
    EP/R014019/1
  • 负责人:
  • 金额:
    $ 131.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The long-term vision motivating this project is of software solutions that enable low-power cheap-and-sustainable imaging devices able to provide point-of-care image data in resource-poor locations at diagnostic/prognostic quality. We achieve this by propagating information from databases of high quality images. We provide a proof of concept using MRI from lower-power scanners available in LMICs, specifically Nigeria, that we enhance by propagating information from databases of images from state-of-the-art MRI scanners available in the UK. We focus on an application to childhood epilepsy to demonstrate early clinical benefit. Childhood epilepsy presents an immediate clinical need in LMICs, as MRI from widely available 0.36T scanners is insufficient to support clinical decisions on curative surgery that are routinely made in the UK using 1.5T or 3T images. This leaves many patients untreated, living with severe epilepsy and resulting physical disabilities and mental disorders, unable to work effectively, and draining sparse medical and social-care resources.We draw on the latest advances in machine learning to approximate the MRIs available in the UK from those accessible in the paediatric neurology clinic in UCH Ibadan, Nigeria - a typical sub-Saharan city hospital. Machine learning has made major advances over the last few years. In particular, it shows remarkable feats of artificial intelligence in data-rich application areas such as computer vision where, for example, computers now outperform humans in object recognition. The advances are just starting to make an impact in medical imaging, which presents unique challenges because a) less data is available than many non-medical computer vision tasks, b) decisions are often more critical as they impact directly on patient outcome. Our recent image quality transfer (IQT) framework propagates information from high quality to low quality medical images. It shows compelling early results, such as revealing thin white matter pathways, usually only accessible from specialist high resolution data sets, from standard resolution images acquired on a clinical scanner. Here we advance IQT to exploit the latest machine learning techniques, enhance those techniques to provide confidence measures valuable for medical decision-making, and tailor solutions specifically to enhance images from the Ibadan paediatric clinic with those from similar cohorts in the UK. We acquire and collate the data sets sufficient to support learning the required image-to-image mappings. Matched pairs of images from the same subjects from UK and Nigerian scanners are not practical to obtain, so we employ unsupervised and semi-supervised learning to construct image-to-image mappings without directly matching training data. We refine promising implementations and assess their impact on clinical decision making in a pilot study in Ibadan using locally agreed metrics. We intend this project as a springboard for a much wider and long term program exploring these ideas to bring about a paradigm shift in imaging that deploys cheap point-of-care devices built specifically to acquire data enhanced by databases of high quality images acquired on state of the art or bespoke devices.
推动该项目的长期愿景是软件解决方案,使低功耗、廉价和可持续的成像设备能够在资源贫乏的地区提供诊断/预后质量的即时护理图像数据。我们通过传播来自高质量图像数据库的信息来实现这一点。我们提供了一个使用低功率MRI扫描仪的概念证明,这些扫描仪来自中低收入国家,特别是尼日利亚,我们通过传播来自英国最先进的MRI扫描仪图像数据库的信息来增强。我们专注于儿童癫痫的应用,以证明早期临床效益。儿童癫痫在中低收入国家具有迫切的临床需求,因为广泛使用的0.36T扫描仪的MRI不足以支持在英国常规使用1.5T或3T图像进行治疗性手术的临床决策。这使得许多患者得不到治疗,患有严重癫痫并因此导致身体残疾和精神障碍,无法有效工作,并耗尽本已稀少的医疗和社会保健资源。我们利用机器学习的最新进展,从尼日利亚伊巴丹联合医院(一家典型的撒哈拉以南城市医院)的儿科神经病学诊所获得英国可用的核磁共振成像。机器学习在过去几年中取得了重大进展。特别是,它展示了人工智能在数据丰富的应用领域的非凡成就,例如计算机视觉,计算机现在在物体识别方面胜过人类。这些进步刚刚开始对医学成像产生影响,这带来了独特的挑战,因为a)可获得的数据比许多非医学计算机视觉任务少,b)决策通常更关键,因为它们直接影响到患者的结果。我们最新的图像质量传输(IQT)框架将信息从高质量的医学图像传播到低质量的医学图像。它显示了令人信服的早期结果,例如揭示薄的白质通路,通常只能从专业的高分辨率数据集,从临床扫描仪上获得的标准分辨率图像中获得。在这里,我们推进IQT利用最新的机器学习技术,增强这些技术,为医疗决策提供有价值的信心措施,并专门定制解决方案,以增强来自伊巴丹儿科诊所的图像与来自英国类似队列的图像。我们获得并整理了足够的数据集,以支持学习所需的图像到图像映射。来自英国和尼日利亚扫描仪的相同受试者的匹配图像对是不现实的,因此我们采用无监督和半监督学习来构建图像到图像的映射,而不直接匹配训练数据。在伊巴丹的一项试点研究中,我们使用当地商定的指标,改进了有希望的实施方案,并评估了它们对临床决策的影响。我们打算将这个项目作为一个跳板,为一个更广泛和长期的项目探索这些想法,带来成像领域的范式转变,部署廉价的即时医疗设备,专门用于获取数据,通过在最先进的设备或定制设备上获得的高质量图像数据库进行增强。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry.
  • DOI:
    10.1126/sciadv.add3607
  • 发表时间:
    2023-02-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
An approach for comparing agricultural development to societal visions.
将农业发展与社会愿景进行比较的方法。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Alexander其他文献

Fatal tumor lysis syndrome in a pediatric patient with acute lymphoblastic leukemia treated with venetoclax
接受维奈托克治疗的急性淋巴细胞白血病儿科患者出现致命性肿瘤溶解综合征
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Sarah M Trinder;Johnathan Soggee;Jessica Spragg;Daniel Alexander;Richard Mitchell;Nick G Gottardo;Shanti Ramachandran
  • 通讯作者:
    Shanti Ramachandran
Can the performance of semi-inverted hydrocyclones be similar to fine screening?
  • DOI:
    10.1016/j.mineng.2019.106147
  • 发表时间:
    2020-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Vladimir Jokovic;Robert Morrison;Daniel Alexander
  • 通讯作者:
    Daniel Alexander
2683: Measuring changes in the brain tumour micro-environment using microstructure MRI
2683:使用微结构MRI测量脑肿瘤微环境的变化
  • DOI:
    10.1016/s0167-8140(24)02851-2
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Najmus S. Iqbal;Marco Palombo;Derek K. Jones;Daniel Alexander;Elisenda Bonet-Carne;Laura Panagiotaki;John Staffurth;Emiliano Spezi;James R. Powell
  • 通讯作者:
    James R. Powell

Daniel Alexander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Alexander', 18)}}的其他基金

Assessing Placental Structure and Function by Unified Fluid Mechanical Modelling and in-vivo MRI
通过统一流体力学模型和体内 MRI 评估胎盘结构和功能
  • 批准号:
    EP/V034537/1
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
JPND: Early Detection of Alzheimer's Disease Subtypes
JPND:阿尔茨海默病亚型的早期检测
  • 批准号:
    MR/T046422/1
  • 财政年份:
    2020
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
JPND: Stratification of presymptomatic amyotrophic lateral sclerosis: the development of novel imaging biomarkers
JPND:症状前肌萎缩侧索硬化症的分层:新型影像生物标志物的开发
  • 批准号:
    MR/T046473/1
  • 财政年份:
    2020
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
Learning MRI and histology image mappings for cancer diagnosis and prognosis
学习 MRI 和组织学图像映射以进行癌症诊断和预后
  • 批准号:
    EP/R006032/1
  • 财政年份:
    2017
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
A biophysical simulation framework for magnetic resonance microstructure imaging
磁共振微结构成像的生物物理模拟框架
  • 批准号:
    EP/N018702/1
  • 财政年份:
    2016
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
Medical image computing for next-generation healthcare technology
下一代医疗保健技术的医学图像计算
  • 批准号:
    EP/M020533/1
  • 财政年份:
    2015
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
Anatomy-Driven Brain Connectivity Mapping
解剖驱动的大脑连接图谱
  • 批准号:
    EP/L022680/1
  • 财政年份:
    2014
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
Computational models of neurodegenerative disease progression
神经退行性疾病进展的计算模型
  • 批准号:
    EP/J020990/1
  • 财政年份:
    2013
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant
Direct Measurements of Microstructure from MRI
通过 MRI 直接测量微观结构
  • 批准号:
    EP/G007748/1
  • 财政年份:
    2008
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Fellowship
Copy of A Monte-Carlo diffusion simulation framework for diffusion MRI
用于扩散 MRI 的蒙特卡罗扩散模拟框架的副本
  • 批准号:
    EP/E064280/1
  • 财政年份:
    2007
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Research Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Supporting Mental Health in Young People: Integrated Methodology for cLinical dEcisions and evidence-based interventions
支持年轻人的心理健康:临床决策和循证干预的综合方法
  • 批准号:
    10072391
  • 财政年份:
    2023
  • 资助金额:
    $ 131.95万
  • 项目类别:
    EU-Funded
SMart tools and Integrated methodology for cLinical dEcisions
用于临床决策的智能工具和集成方法
  • 批准号:
    10068571
  • 财政年份:
    2023
  • 资助金额:
    $ 131.95万
  • 项目类别:
    EU-Funded
Development of a Standardized, Reliable and Easy-to-Use Clinical Instrument to Measure First Ray Mobility and Position of the Medial Forefoot to Assist with Clinical Decisions and Treatments
开发标准化、可靠且易于使用的临床仪器来测量前足内侧的第一射线活动度和位置,以协助临床决策和治疗
  • 批准号:
    10772958
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
  • 批准号:
    466020
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Directed Grant
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
  • 批准号:
    465699
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Directed Grant
Enhanced Clinical Decisions for Management of Benign Prostatic Hyperplasia Using Patient-Reported Outcomes
利用患者报告的结果增强良性前列腺增生治疗的临床决策
  • 批准号:
    10861513
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
Enhanced Clinical Decisions for Management of Benign Prostatic Hyperplasia Using Patient-Reported Outcomes
利用患者报告的结果增强良性前列腺增生治疗的临床决策
  • 批准号:
    10698073
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
Development of a Standardized, Reliable and Easy-to-Use Clinical Instrument to Measure First Ray Mobility and Position of the Medial Forefoot to Assist with Clinical Decisions and Treatments
开发标准化、可靠且易于使用的临床仪器来测量前足内侧的第一射线活动度和位置,以协助临床决策和治疗
  • 批准号:
    10483379
  • 财政年份:
    2022
  • 资助金额:
    $ 131.95万
  • 项目类别:
SBIR Phase I: Leveraging smartphone data to improve clinical decisions in concussion care
SBIR 第一阶段:利用智能手机数据改善脑震荡护理的临床决策
  • 批准号:
    2051965
  • 财政年份:
    2021
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Standard Grant
Decisions, decisions: choose-your-own adventure geriatric case simulations to improve clinical reasoning in Pharmacy education
决策,决策:选择您自己的冒险老年病例模拟,以改善药学教育中的临床推理
  • 批准号:
    466822
  • 财政年份:
    2021
  • 资助金额:
    $ 131.95万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了