Medical image computing for next-generation healthcare technology
下一代医疗保健技术的医学图像计算
基本信息
- 批准号:EP/M020533/1
- 负责人:
- 金额:$ 187.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At the heart of this platform is a vision of the future of medical technology enabled by the increasing availability of rich and diverse data from large-scale data collection initiatives. The vision is to exploit this data mass to enrich sparse data acquired at point of care. For example, a single clinical MRI or ultrasound scan, together with subject-specific clinical data (age, sex, symptoms, genetics) can index a centralised data mass to infer likely diagnosis, prognosis, and treatment outcomes by matching to similar individuals about whom much more is known. The same paradigm further enables cheap and/or small and/or low-power devices able to acquire data in non-specialist locations, such as portable or hand-held scanners, or tiny imaging devices in surgical instruments. Platform funding will maintain our world-leading activities in a range of medical image computing topics, support alignment of currently distinct strands of work for mutual short-term benefit, and develop key enabling technology and demonstrators of our long-term vision. Our current work develops state of the art imaging technology, image analysis techniques, and mathematical and computational models that maximise the information contained in and derived from large data sets. We also develop a range of automated diagnostic systems and surgical support systems that can demonstrate the benefits of the data-driven paradigm.Platform funding supports the career development of the applicants, a pool of associated academic staff, talented post-doctoral researchers, and students coming through an associated EPSRC Centre for Doctoral Training in Medical Imaging. The platform provides opportunities for all to develop new ideas crossing boundaries between different topics, while contributing to a central long-term vision that supports a variety of future research careers. Competitive allocation of resource under close mentorship of senior colleagues instils early-career researchers with essential academic skills required for successful future careers. It further enhances the career progression of our senior staff by supporting opportunities to acquire new skills, establish new collaborations, explore commercialisation, and recruit the best staff from around the world when opportunities arise.
该平台的核心是对医疗技术未来的愿景,这是由大规模数据收集计划中丰富多样的数据的日益可用性所实现的。我们的愿景是利用这些数据来丰富在护理点采集的稀疏数据。例如,一个单一的临床MRI或超声扫描,连同受试者特定的临床数据(年龄,性别,症状,遗传学)可以索引一个集中的数据质量,以推断可能的诊断,预后和治疗结果,通过匹配到相似的个人,他们知道得更多。相同的范例还使得能够在非专业位置获取数据的廉价和/或小型和/或低功率设备成为可能,诸如便携式或手持式扫描仪,或者手术器械中的微小成像设备。平台资金将保持我们在一系列医学图像计算主题方面的世界领先活动,支持目前不同工作领域的协调,以实现共同的短期利益,并开发关键的使能技术和我们长期愿景的示范者。我们目前的工作开发了最先进的成像技术,图像分析技术以及数学和计算模型,这些模型最大限度地提高了包含在大型数据集中的信息。我们还开发了一系列自动化诊断系统和手术支持系统,可以展示数据驱动模式的好处。平台资金支持申请人的职业发展,一个相关的学术人员,有才华的博士后研究人员,以及来自相关EPSRC医学影像博士培训中心的学生。该平台为所有人提供了跨越不同主题之间界限的新想法的机会,同时为支持各种未来研究事业的中心长期愿景做出贡献。在资深同事的密切指导下,竞争性的资源分配为早期职业研究人员灌输了未来成功职业所需的基本学术技能。它通过支持获得新技能、建立新合作、探索商业化以及在机会出现时从世界各地招聘最优秀员工的机会,进一步促进我们高级员工的职业发展。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning.
- DOI:10.1186/s12911-021-01693-6
- 发表时间:2021-12-08
- 期刊:
- 影响因子:3.5
- 作者:Alexander N;Alexander DC;Barkhof F;Denaxas S
- 通讯作者:Denaxas S
SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI.
- DOI:10.1016/j.neuroimage.2021.118183
- 发表时间:2021-08-15
- 期刊:
- 影响因子:5.7
- 作者:Afzali M;Nilsson M;Palombo M;Jones DK
- 通讯作者:Jones DK
Additional file 1 of Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning
使用无监督机器学习识别和评估护理电子健康记录中阿尔茨海默病临床亚型的附加文件 1
- DOI:10.6084/m9.figshare.17149693
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alexander N
- 通讯作者:Alexander N
Application of Convolutional Neural Network for Semantic Segmentation of Bandung Urban Scenes
卷积神经网络在万隆城市场景语义分割中的应用
- DOI:10.1109/icodse56892.2022.9972006
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alexander D
- 通讯作者:Alexander D
Mid-space-independent deformable image registration.
- DOI:10.1016/j.neuroimage.2017.02.055
- 发表时间:2017-05-15
- 期刊:
- 影响因子:5.7
- 作者:Aganj I;Iglesias JE;Reuter M;Sabuncu MR;Fischl B
- 通讯作者:Fischl B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Alexander其他文献
Fatal tumor lysis syndrome in a pediatric patient with acute lymphoblastic leukemia treated with venetoclax
接受维奈托克治疗的急性淋巴细胞白血病儿科患者出现致命性肿瘤溶解综合征
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
Sarah M Trinder;Johnathan Soggee;Jessica Spragg;Daniel Alexander;Richard Mitchell;Nick G Gottardo;Shanti Ramachandran - 通讯作者:
Shanti Ramachandran
Can the performance of semi-inverted hydrocyclones be similar to fine screening?
- DOI:
10.1016/j.mineng.2019.106147 - 发表时间:
2020-01-15 - 期刊:
- 影响因子:
- 作者:
Vladimir Jokovic;Robert Morrison;Daniel Alexander - 通讯作者:
Daniel Alexander
2683: Measuring changes in the brain tumour micro-environment using microstructure MRI
2683:使用微结构MRI测量脑肿瘤微环境的变化
- DOI:
10.1016/s0167-8140(24)02851-2 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Najmus S. Iqbal;Marco Palombo;Derek K. Jones;Daniel Alexander;Elisenda Bonet-Carne;Laura Panagiotaki;John Staffurth;Emiliano Spezi;James R. Powell - 通讯作者:
James R. Powell
Daniel Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Alexander', 18)}}的其他基金
Assessing Placental Structure and Function by Unified Fluid Mechanical Modelling and in-vivo MRI
通过统一流体力学模型和体内 MRI 评估胎盘结构和功能
- 批准号:
EP/V034537/1 - 财政年份:2022
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
JPND: Early Detection of Alzheimer's Disease Subtypes
JPND:阿尔茨海默病亚型的早期检测
- 批准号:
MR/T046422/1 - 财政年份:2020
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
JPND: Stratification of presymptomatic amyotrophic lateral sclerosis: the development of novel imaging biomarkers
JPND:症状前肌萎缩侧索硬化症的分层:新型影像生物标志物的开发
- 批准号:
MR/T046473/1 - 财政年份:2020
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
Enabling Clinical Decisions From Low-power MRI In Developing Nations Through Image Quality Transfer
通过图像质量传输,在发展中国家利用低功率 MRI 做出临床决策
- 批准号:
EP/R014019/1 - 财政年份:2018
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
Learning MRI and histology image mappings for cancer diagnosis and prognosis
学习 MRI 和组织学图像映射以进行癌症诊断和预后
- 批准号:
EP/R006032/1 - 财政年份:2017
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
A biophysical simulation framework for magnetic resonance microstructure imaging
磁共振微结构成像的生物物理模拟框架
- 批准号:
EP/N018702/1 - 财政年份:2016
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
Anatomy-Driven Brain Connectivity Mapping
解剖驱动的大脑连接图谱
- 批准号:
EP/L022680/1 - 财政年份:2014
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
Computational models of neurodegenerative disease progression
神经退行性疾病进展的计算模型
- 批准号:
EP/J020990/1 - 财政年份:2013
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
Direct Measurements of Microstructure from MRI
通过 MRI 直接测量微观结构
- 批准号:
EP/G007748/1 - 财政年份:2008
- 资助金额:
$ 187.6万 - 项目类别:
Fellowship
Copy of A Monte-Carlo diffusion simulation framework for diffusion MRI
用于扩散 MRI 的蒙特卡罗扩散模拟框架的副本
- 批准号:
EP/E064280/1 - 财政年份:2007
- 资助金额:
$ 187.6万 - 项目类别:
Research Grant
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
面向英汉双向跨语言图像检索的文本分析关键技术研究
- 批准号:61170095
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
- 批准号:40974100
- 批准年份:2009
- 资助金额:45.0 万元
- 项目类别:面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
- 批准号:60573149
- 批准年份:2005
- 资助金额:21.0 万元
- 项目类别:面上项目
分数阶傅里叶变换多分量图像数字水印研究
- 批准号:60472044
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 187.6万 - 项目类别:
Towards Generalizable Reasoned Deep Learning for Efficient Interpretable Medical Image Computing
迈向可泛化推理深度学习以实现高效可解释医学图像计算
- 批准号:
RGPIN-2020-06179 - 财政年份:2022
- 资助金额:
$ 187.6万 - 项目类别:
Discovery Grants Program - Individual
Assessing RF heating of active implantable medical devices in low-field MRI system
评估低场 MRI 系统中有源植入式医疗设备的射频加热
- 批准号:
10564463 - 财政年份:2022
- 资助金额:
$ 187.6万 - 项目类别:
Weak supervision with imperfect annotations for medical image computing
医学图像计算的弱监督和不完善的注释
- 批准号:
RGPIN-2021-02914 - 财政年份:2022
- 资助金额:
$ 187.6万 - 项目类别:
Discovery Grants Program - Individual
Assessing RF heating of active implantable medical devices in low-field MRI system
评估低场 MRI 系统中有源植入式医疗设备的射频加热
- 批准号:
10709014 - 财政年份:2022
- 资助金额:
$ 187.6万 - 项目类别:
International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI) 2021
医学图像计算和计算机辅助干预国际会议 (MICCAI) 2021
- 批准号:
10316676 - 财政年份:2021
- 资助金额:
$ 187.6万 - 项目类别:
Weak supervision with imperfect annotations for medical image computing
医学图像计算的弱监督和不完善的注释
- 批准号:
RGPIN-2021-02914 - 财政年份:2021
- 资助金额:
$ 187.6万 - 项目类别:
Discovery Grants Program - Individual
Towards Generalizable Reasoned Deep Learning for Efficient Interpretable Medical Image Computing
迈向可泛化推理深度学习以实现高效可解释医学图像计算
- 批准号:
RGPIN-2020-06179 - 财政年份:2021
- 资助金额:
$ 187.6万 - 项目类别:
Discovery Grants Program - Individual
International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI) 2021
医学图像计算和计算机辅助干预国际会议 (MICCAI) 2021
- 批准号:
10460593 - 财政年份:2021
- 资助金额:
$ 187.6万 - 项目类别: