Computational & Biochemical Studies of the Malarial Blood Stage Invasion Complex

计算型

基本信息

项目摘要

DESCRIPTION (provided by applicant): While effective treatments for malaria exist, parasite resistance to these drugs is growing rapidly, and there is a critical need for new mechanisms to combat this disease. Several recent studies indicate that the motile and invasive machinery of the parasite represents a promising new target for drug discovery. In order to facilitate future drug discovery projects targeting the malarial motor and invasion machinery, this proposal aims to use an interdisciplinary approach to elucidate the structural features of a part of this complex expressed in Plasmodium falciparum merozoites - the invasive blood stage of this parasite, andthe causative agent of cerebral malaria and the majority of malarial mortality. Plasmodia, like other apicomplexan protozoa, employ a mechanism of substrate-dependent gliding motility that does not depend on cilia or flagella. Gliding and host cell invasion are crucial parasite functions and increasingly appear to be driven by an actin/myosin motor located beneath the organism's plasma membrane. Myosin generates movement by forcefully displacing actin. In Plasmodium merozoites, this force is transmitted - viatheactin-binding, glycolytic enzyme, aldolase - to MTRAP, a type I trans-membrane molecule bearing adhesive domains capable of interacting with host-cell surfaces. The parasite uses this force to actively invade human red blood cells. This proposal aims to elucidate the structural features of the MTRAP-aldolase interaction in Plasmodium falciparum merozoites via the biochemical characterization of this complex in vitro and the three-dimensional resolution of the MTRAP-aldolase interface in silico. A combination of site-directed mutagenesis, homology modeling, and computational docking will be used to identify and visualize key contacts between the two proteins. The detailed picture of the structural basis for the MTRAP-aldolase interaction thus obtained will serve as the platform for the future rational design of anti-malarial agents. PUBLIC HEALTH RELEVANCE: Malarial disease affects hundreds of millions of people worldwide - afflicting them with anemia, excruciating pain, fever, and in severe cases, cerebral blood vessel occlusion, organ damage, and death. The research proposed here serves as an ideal training opportunity in computational biology and the biochemistry of a global infectious disease, while simultaneously increasing the current knowledge of a key aspect of malarial biology, and facilitating the design of novel, safe, and effective anti-malarial agents.
描述(由申请人提供):虽然存在有效的疟疾治疗方法,但寄生虫对这些药物的耐药性正在迅速增长,迫切需要新的机制来对抗这种疾病。最近的几项研究表明,寄生虫的能动性和侵入性机制是药物发现的一个有前途的新靶点。为了促进未来针对疟疾马达和入侵机制的药物发现项目,该提案旨在使用跨学科方法来阐明恶性疟原虫裂殖子中表达的这种复合物的一部分的结构特征-这种寄生虫的侵入性血液阶段,以及脑型疟疾的病原体和大多数疟疾死亡率。疟原虫,像其他顶复门原生动物,采用基板依赖的滑行运动的机制,不依赖于纤毛或鞭毛。滑翔和宿主细胞入侵是至关重要的寄生虫功能,并越来越多地出现由位于生物体质膜下的肌动蛋白/肌球蛋白马达驱动。肌球蛋白通过强力取代肌动蛋白来产生运动。在疟原虫裂殖子中,这种力通过肌动蛋白结合、糖酵解酶、醛缩酶传递给MTRAP,MTRAP是一种I型跨膜分子,具有能够与宿主细胞表面相互作用的粘附结构域。这种寄生虫利用这种力量主动侵入人体红细胞。该建议旨在阐明恶性疟原虫裂殖子中MTRAP-醛缩酶相互作用的结构特征,通过该复合物在体外的生物化学表征和MTRAP-醛缩酶界面在计算机上的三维分辨率。将使用定点诱变、同源性建模和计算对接的组合来鉴定和可视化两种蛋白质之间的关键接触。因此获得的MTRAP-醛缩酶相互作用的结构基础的详细图片将作为未来抗疟疾剂的合理设计的平台。公共卫生相关性:疟疾影响着全世界数亿人--使他们遭受贫血、剧痛、发烧的折磨,在严重的情况下,还会导致脑血管闭塞、器官损伤和死亡。本文提出的研究是计算生物学和全球传染病生物化学的理想培训机会,同时增加了疟疾生物学关键方面的现有知识,并促进了新型,安全和有效的抗疟疾药物的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sondra Maureen Nemetski其他文献

Sondra Maureen Nemetski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
  • 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 4.36万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 4.36万
  • 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
  • 批准号:
    10021363
  • 财政年份:
    2022
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Investment Accelerator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了