Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome

制定儿科急性哮喘严重程度和结果预测规则

基本信息

  • 批准号:
    7385445
  • 负责人:
  • 金额:
    $ 14.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-15 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a multivariable Asthma Prediction Rule (APR) conforming to clinical and biostatistical standards for clinical prediction rule development. The APR will include physical findings, vital signs, and objective physiologic variables obtained at presentation to an acute care facility, and trends of this data over the first 6 hours of care. This data is gathered by multiple members of a medical team, but is infrequently utilized in a coherent and systematic manner to optimally advance patient care. The APR will use those elements of data that are statistically demonstrated to predict the need for in-hospital care. In addition, we will further develop and validate a mathematic model using physiologic waveform data from the pulse oximeter as a candidate predictor variable for the APR. The novel integration of this data into the APR might enhance the predictive validity and reliability of the APR to be developed. Primary Aim: To determine independent risk factors in persons with asthma exacerbations that are associated with the need for in-hospital care. We hypothesize that select predictor variables can be utilized in an APR that will in turn predict need for in-hospital care with sufficient sensitivity and specificity to objectively inform clinical decisions. To test this hypothesis we will conduct a prospective study of children ages 7-17 years who present to a Pediatric Emergency Department with asthma exacerbations.Physical examination findings, vital signs, and objective physiologic variables obtained at presentation and during the first 6 hours of care will be used as candidate predictor variables to predict either hospital length of stay greater than 1 day if the participant is admitted to hospital, or relapse within 48 hours if discharged to home. This data will be utilized for the development of an APR in accordance with established clinical and biostatistical standards. Secondary Aim: To further develop and validate a real-time, continuous asthma severity measure using quantified oximeter plethysmograph waveform data that can be used and tested simultaneously as a candidate predictor variable for the APR. We hypothesize that an established mathematic model for oximeter Plethysmograph Estimated Pulsus paradoxus (PEP) will provide an effort-independent, real-time, continuous and valid estimate of the severity of airway obstruction for incorporation in the APR. To test this hypothesis, PEP will be statistically compared with the criterion standards of spirometry and specific airway resistance. (End of Abstract)
描述(由申请人提供):我们建议制定符合临床和生物统计学标准的多变量哮喘预测规则(APR),用于临床预测规则的制定。APR将包括身体检查、生命体征和到急症护理机构就诊时获得的客观生理变量,以及这些数据在治疗前6小时内的趋势。这些数据是由医疗团队的多个成员收集的,但很少以连贯和系统的方式使用,以最佳地推进患者护理。APR将使用那些经统计证明的数据元素来预测对住院护理的需求。此外,我们将进一步开发和验证一个数学模型,使用脉搏血氧仪的生理波形数据作为APR的候选预测变量。将这些数据整合到APR中可能会提高待开发的APR预测的有效性和可靠性。主要目的:确定与住院治疗需求相关的哮喘加重患者的独立危险因素。我们假设选择的预测变量可以在APR中使用,从而以足够的敏感性和特异性预测住院治疗需求,从而客观地为临床决策提供信息。为了验证这一假设,我们将对7-17岁的儿童进行一项前瞻性研究,这些儿童因哮喘发作而就诊于儿科急诊科。体检结果、生命体征和就诊时及治疗前6小时获得的客观生理变量将作为候选预测变量,用于预测住院时间超过1天(如果参与者入院)或出院后48小时内复发(如果参与者出院回家)。这些数据将用于根据既定的临床和生物统计标准制定APR。次要目标:为了进一步开发和验证一种实时的、连续的哮喘严重程度测量方法,该方法使用定量血氧计容积脉搏波波形数据,可以同时作为apr的候选预测变量进行测试。我们假设,血氧计容积脉搏波估计(PEP)的建立数学模型将提供一种不依赖于努力的、实时的、为了验证这一假设,PEP将与肺量测定和特定气道阻力的标准进行统计比较。(摘要结束)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DONALD Hayes ARNOLD其他文献

DONALD Hayes ARNOLD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DONALD Hayes ARNOLD', 18)}}的其他基金

Dose escalation clinical trial of high-dose oral montelukast to inform future RCT in children with acute asthma exacerbations
大剂量口服孟鲁司特的剂量递增临床试验为哮喘急性发作儿童的未来随机对照试验提供信息
  • 批准号:
    10649012
  • 财政年份:
    2023
  • 资助金额:
    $ 14.69万
  • 项目类别:
Pulse Oximeter Innovation to Measure Pulsus Paradoxus and Respiratory Disease Severity
脉搏血氧仪创新测量奇异脉和呼吸系统疾病严重程度
  • 批准号:
    9046119
  • 财政年份:
    2016
  • 资助金额:
    $ 14.69万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    8038324
  • 财政年份:
    2008
  • 资助金额:
    $ 14.69万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    7777333
  • 财政年份:
    2008
  • 资助金额:
    $ 14.69万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    8232029
  • 财政年份:
    2008
  • 资助金额:
    $ 14.69万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    7585292
  • 财政年份:
    2008
  • 资助金额:
    $ 14.69万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 14.69万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了