Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome

制定儿科急性哮喘严重程度和结果预测规则

基本信息

  • 批准号:
    7585292
  • 负责人:
  • 金额:
    $ 14.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-15 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a multivariable Asthma Prediction Rule (APR) conforming to clinical and biostatistical standards for clinical prediction rule development. The APR will include physical findings, vital signs, and objective physiologic variables obtained at presentation to an acute care facility, and trends of this data over the first 6 hours of care. This data is gathered by multiple members of a medical team, but is infrequently utilized in a coherent and systematic manner to optimally advance patient care. The APR will use those elements of data that are statistically demonstrated to predict the need for in-hospital care. In addition, we will further develop and validate a mathematic model using physiologic waveform data from the pulse oximeter as a candidate predictor variable for the APR. The novel integration of this data into the APR might enhance the predictive validity and reliability of the APR to be developed. Primary Aim: To determine independent risk factors in persons with asthma exacerbations that are associated with the need for in-hospital care. We hypothesize that select predictor variables can be utilized in an APR that will in turn predict need for in-hospital care with sufficient sensitivity and specificity to objectively inform clinical decisions. To test this hypothesis we will conduct a prospective study of children ages 7-17 years who present to a Pediatric Emergency Department with asthma exacerbations.Physical examination findings, vital signs, and objective physiologic variables obtained at presentation and during the first 6 hours of care will be used as candidate predictor variables to predict either hospital length of stay greater than 1 day if the participant is admitted to hospital, or relapse within 48 hours if discharged to home. This data will be utilized for the development of an APR in accordance with established clinical and biostatistical standards. Secondary Aim: To further develop and validate a real-time, continuous asthma severity measure using quantified oximeter plethysmograph waveform data that can be used and tested simultaneously as a candidate predictor variable for the APR. We hypothesize that an established mathematic model for oximeter Plethysmograph Estimated Pulsus paradoxus (PEP) will provide an effort-independent, real-time, continuous and valid estimate of the severity of airway obstruction for incorporation in the APR. To test this hypothesis, PEP will be statistically compared with the criterion standards of spirometry and specific airway resistance. (End of Abstract)
描述(由申请人提供):我们建议开发符合临床预测规则开发的临床和生物统计学标准的多变量哮喘预测规则(APR)。APR将包括在急诊护理机构就诊时获得的体格检查结果、生命体征和客观生理变量,以及该数据在护理前6小时内的趋势。这些数据由医疗团队的多名成员收集,但很少以连贯和系统的方式用于最佳地推进患者护理。APR将使用统计学证明的数据元素来预测住院护理的需求。此外,我们将进一步开发和验证数学模型,使用脉搏血氧仪的生理波形数据作为APR的候选预测变量。将该数据整合到APR中的新方法可能会增强待开发APR的预测有效性和可靠性。主要目的:确定哮喘急性发作患者与住院治疗需求相关的独立危险因素。我们假设,选择预测变量可以在APR中使用,这反过来又可以预测住院护理的需要,具有足够的灵敏度和特异性,以客观地为临床决策提供信息。为了验证这一假设,我们将对7-17岁的儿童进行前瞻性研究,这些儿童因哮喘急性发作而到儿科急诊科就诊。在就诊时和最初6小时护理期间获得的客观生理变量将用作候选预测变量,以预测如果受试者入院,住院,或出院回家后48小时内复发。根据既定的临床和生物统计学标准,这些数据将用于开发APR。次要目的:为了进一步开发和验证使用定量血氧体积描记波形数据的实时、连续的哮喘严重程度测量,该数据可以作为APR的候选预测变量同时使用和测试。我们假设,血氧体积描记估计的奇异脉搏(PEP)的已建立数学模型将提供与努力无关的实时、为了检验这一假设,PEP将与肺量测定和比气道阻力的标准进行统计学比较。(End摘要)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DONALD Hayes ARNOLD其他文献

DONALD Hayes ARNOLD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DONALD Hayes ARNOLD', 18)}}的其他基金

Dose escalation clinical trial of high-dose oral montelukast to inform future RCT in children with acute asthma exacerbations
大剂量口服孟鲁司特的剂量递增临床试验为哮喘急性发作儿童的未来随机对照试验提供信息
  • 批准号:
    10649012
  • 财政年份:
    2023
  • 资助金额:
    $ 14.77万
  • 项目类别:
Pulse Oximeter Innovation to Measure Pulsus Paradoxus and Respiratory Disease Severity
脉搏血氧仪创新测量奇异脉和呼吸系统疾病严重程度
  • 批准号:
    9046119
  • 财政年份:
    2016
  • 资助金额:
    $ 14.77万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    8038324
  • 财政年份:
    2008
  • 资助金额:
    $ 14.77万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    7385445
  • 财政年份:
    2008
  • 资助金额:
    $ 14.77万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    7777333
  • 财政年份:
    2008
  • 资助金额:
    $ 14.77万
  • 项目类别:
Development of a Pediatric Acute Asthma Prediction Rule for severity and outcome
制定儿科急性哮喘严重程度和结果预测规则
  • 批准号:
    8232029
  • 财政年份:
    2008
  • 资助金额:
    $ 14.77万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 14.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了