SEMICONDUCTOR SURFACE PLASMONS: A ROUTE TO TUNABLE THZ DEVICES AND SENSORS
半导体表面等离子体激元:可调谐太赫兹器件和传感器的途径
基本信息
- 批准号:EP/F026757/1
- 负责人:
- 金额:$ 41.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerous important processes in nature occur at THz frequencies: for example, many rotational and vibrational transitions of various liquid and gas molecules lie within the THz frequency band. In particular, the vibrational breathing modes of many large biomolecules occur at these low frequencies, giving a unique fingerprint in the THz region. While it is clear that the THz band is scientifically very rich, research in this frequency region is limited by technology: the so-called THz gap , occupying a large portion of the electromagnetic spectrum between the infrared and microwave bands, remains relatively unexplored due to a lack of efficient laboratory emitters/detectors and optical components compared to neighboring spectral regions.Here, we explore the potential for developing new THz components and sensors based on semiconductor surface plasmon-polaritons (SPPs). SPPs are electromagnetic waves that propagate along the interface between a conductor and insulator, bound to the surface by the free electrons in the conducting medium. To date, most research investigating the properties of SPPs has been limited to frequencies near metallic plasma frequencies (i.e. at visible and infrared frequencies) where SPP modes are strongly confined to metal surfaces. Semiconductors, with plasma frequencies in the THz range, offer the potential for sustaining SPPs at THz frequencies. Furthermore, semiconductors offer a unique and hugely beneficial advantage over metals: since the surface charge density can be modified by, for example chemical doping, plasma frequencies and SPP properties can be tailored within the THz frequency range. An extension of this is the exciting possibility of all-optical plasmon control, i.e. 'photo-doping' a semiconductor with visible frequency light, so that plasma frequencies may be tuned by a visible frequency light source. Using ultrafast laser sources for this purpose, the properties of THz SPP modes can therefore be tailored and switched on very fast (picosecond) timescales, something that is essential for high-bandwidth and/or time resolved applicationsBorrowing from the well established fields of microwave and optical photonics, and by utilizing the intrinsically tunable nature of semiconductors, we aim to manipulate THz light in new ways using semiconductor SPPs. Initially, we wish to explore the underlying physics of SPPs in the THz frequency range, before looking to develop new applications for this concept. Although there are many areas of potential application for semiconductor SPPs, we will concentrate on two specific areas: firstly, the design of optical components (such as tunable filters, modulators and beam steering systems) based on semiconductor SPPs and secondly, spectroscopy/sensing of biomolecules. The development of new optical components is essential for the continued expansion of scientific research in the THz frequency domain, and we will exploit the wealth of experience currently employed in Exeter to investigate similar applications at microwave and optical frequencies. The second of these potential applications involves what is thought to be possibly the future killer application of THz radiation, i.e. using the fingerprint of large molecules in the THz region for biosensing and biomedical applications. In an analogy to recently developed surface plasmon sensors operating at visible frequencies, employing SPPs for THz sensing will significantly improve sensitivity by concentrating THz radiation in a very thin region close to the semiconductor surface, allowing sensing of very low concentration samples.
自然界中许多重要的过程都发生在太赫兹频率下:例如,各种液体和气体分子的许多旋转和振动跃迁都位于太赫兹频带内。特别是,许多大的生物分子的振动呼吸模式发生在这些低频率,在太赫兹区域提供了一个独特的指纹。虽然很明显太赫兹波段在科学上非常丰富,但在这个频率区域的研究受到技术的限制:由于与相邻的光谱区域相比缺乏有效的实验室发射器/检测器和光学部件,占据红外和微波波段之间的电磁光谱的大部分的所谓的THz间隙仍然相对未被探索。这里,我们探索了开发基于半导体表面等离子体激元(SPP)的新型THz元件和传感器的潜力。SPP是电磁波,其沿着导体和绝缘体之间的界面传播,通过导电介质中的自由电子束缚到表面。到目前为止,大多数研究调查SPP的属性已被限制在金属等离子体频率附近的频率(即在可见光和红外频率),其中SPP模式被强烈地限制在金属表面。等离子体频率在太赫兹范围内的半导体具有在太赫兹频率下维持SPP的潜力。此外,与金属相比,半导体具有独特且巨大的优势:由于表面电荷密度可以通过化学掺杂等方式进行修改,因此等离子体频率和SPP特性可以在THz频率范围内进行调整。其延伸是全光学等离子体激元控制的令人兴奋的可能性,即用可见频率光“光掺杂”半导体,使得等离子体频率可以通过可见频率光源来调谐。为此目的使用超快激光源,THz SPP模式的特性因此可以在非常快(皮秒)的时间尺度上进行定制和切换,这对于高带宽和/或时间分辨应用至关重要。借用微波和光学光子学的成熟领域,并利用半导体的固有可调谐性质,我们的目标是使用半导体SPP以新的方式操纵THz光。最初,我们希望在为这一概念开发新的应用之前,探索太赫兹频率范围内SPP的基本物理学。虽然有许多领域的潜在应用的半导体SPP,我们将集中在两个特定的领域:首先,光学元件(如可调谐滤波器,调制器和光束转向系统)的设计的基础上半导体SPP和第二,光谱/传感的生物分子。新的光学元件的发展是必不可少的科学研究在太赫兹频域的持续扩张,我们将利用丰富的经验,目前在埃克塞特调查在微波和光学频率类似的应用。这些潜在应用中的第二个涉及被认为可能是THz辐射的未来杀手级应用,即使用THz区域中大分子的指纹进行生物传感和生物医学应用。与最近开发的在可见频率下工作的表面等离子体传感器类似,采用SPP进行THz感测将通过将THz辐射集中在靠近半导体表面的非常薄的区域中来显著提高灵敏度,从而允许感测非常低浓度的样品。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-modal transmission of microwaves through hole arrays.
- DOI:10.1364/oe.19.013793
- 发表时间:2011-07
- 期刊:
- 影响因子:3.8
- 作者:J. Edmunds;E. Hendry;A. Hibbins;J. Sambles;I. Youngs
- 通讯作者:J. Edmunds;E. Hendry;A. Hibbins;J. Sambles;I. Youngs
Importance of diffraction in determining the dispersion of designer surface plasmons
- DOI:10.1103/physrevb.78.235426
- 发表时间:2008-12-01
- 期刊:
- 影响因子:3.7
- 作者:Hendry, E.;Hibbins, A. P.;Sambles, J. R.
- 通讯作者:Sambles, J. R.
Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures
- DOI:10.1103/physrevb.87.085405
- 发表时间:2013-02-05
- 期刊:
- 影响因子:3.7
- 作者:Davis, T. J.;Hendry, E.
- 通讯作者:Hendry, E.
Super-resolution imaging for sub-IR frequencies based on total internal reflection
- DOI:10.1364/optica.408678
- 发表时间:2021-01-20
- 期刊:
- 影响因子:10.4
- 作者:Barr, Lauren E.;Karlsen, Peter;Hendry, Euan
- 通讯作者:Hendry, Euan
Role of Dielectric Drag in Polaron Mobility in Lead Halide Perovskites
- DOI:10.1021/acsenergylett.7b00717
- 发表时间:2017-11-01
- 期刊:
- 影响因子:22
- 作者:Bonn, Mischa;Miyata, Kiyoshi;Zhu, X. -Y.
- 通讯作者:Zhu, X. -Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Euan Hendry其他文献
Hyperspectral imaging of microwave metasurfaces with deeply subwavelength resolution
具有亚波长深度分辨率的微波超表面的高光谱成像
- DOI:
10.1038/s41467-025-59814-y - 发表时间:
2025-05-17 - 期刊:
- 影响因子:15.700
- 作者:
Harry Penketh;Cameron P. Gallagher;Michal Mrnka;Christopher R. Lawrence;David B. Phillips;Ian R. Hooper;Euan Hendry - 通讯作者:
Euan Hendry
Super-resolution hyperspectral characterisation of microwave metamaterials
微波超材料的超分辨率高光谱表征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
H. Penketh;Cameron P. Gallagher;M. Mrnka;Ian R. Hooper;Christopher R. Lawrence;David B. Phillips;Euan Hendry - 通讯作者:
Euan Hendry
Localised modes of sub-wavelength hole arrays in thin metal films
金属薄膜中亚波长孔阵列的局域模式
- DOI:
10.1117/12.780465 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
J. Parsons;Euan Hendry;Baptiste Auguié;William L. Barnes;J. Sambles - 通讯作者:
J. Sambles
Euan Hendry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Euan Hendry', 18)}}的其他基金
Ultrafast all optical beam steering
超快全光束控制
- 批准号:
NE/T014105/1 - 财政年份:2020
- 资助金额:
$ 41.01万 - 项目类别:
Research Grant
"Computational spectral imaging in the THz band"
“太赫兹波段的计算光谱成像”
- 批准号:
EP/S036466/1 - 财政年份:2019
- 资助金额:
$ 41.01万 - 项目类别:
Research Grant
"Graphene nanophotonics: Smaller, stronger, faster"
“石墨烯纳米光子学:更小、更强、更快”
- 批准号:
EP/K041215/1 - 财政年份:2014
- 资助金额:
$ 41.01万 - 项目类别:
Fellowship
Non-equilibrium and relaxation phenomena in graphene-based devices
石墨烯基器件中的非平衡和弛豫现象
- 批准号:
EP/G041482/1 - 财政年份:2009
- 资助金额:
$ 41.01万 - 项目类别:
Research Grant
相似国自然基金
“surface-17”量子纠错码在超导量子电路中的实现
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于surface hopping方法探索有机半导体中激子解体机制
- 批准号:LY19A040007
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
- 批准号:11574379
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
- 批准号:11426209
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Nano/Micro-surface pattern的摩擦特性研究
- 批准号:50765008
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Light amplification in organic thin films by wgm resonance of long-range surface plasmons and its applications towards wavelength control
通过长程表面等离子体的 wgm 共振实现有机薄膜中的光放大及其在波长控制中的应用
- 批准号:
23K04881 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Dispersive Coupling of Light to Surface Plasmons for Biosensing
LEAPS-MPS:用于生物传感的光与表面等离子体的色散耦合
- 批准号:
2137952 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
Standard Grant
Imaging of surface plasmons with a microspot photoelectron microscopy
使用微点光电子显微镜对表面等离子体进行成像
- 批准号:
18K04942 - 财政年份:2018
- 资助金额:
$ 41.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface plasmons on circular diffraction gratings
圆形衍射光栅上的表面等离子体激元
- 批准号:
510045-2017 - 财政年份:2017
- 资助金额:
$ 41.01万 - 项目类别:
University Undergraduate Student Research Awards
GraSP_Graphene Surface Plasmons for Tunable Cavity Quantum Electrodynamics
GraSP_石墨烯表面等离子体用于可调谐腔量子电动力学
- 批准号:
378579271 - 财政年份:2017
- 资助金额:
$ 41.01万 - 项目类别:
Research Grants
Correlography of randomly scattered surface plasmons for quantitative biology
用于定量生物学的随机散射表面等离子体的相关图
- 批准号:
1992728 - 财政年份:2017
- 资助金额:
$ 41.01万 - 项目类别:
Studentship
Utilisation de la spectroscopie Raman à effet de pointe pour l'étude de réactions chimiques induites par des plasmons de surface
利用拉曼光谱和表面等离激元化学反应研究的点效应
- 批准号:
488104-2016 - 财政年份:2017
- 资助金额:
$ 41.01万 - 项目类别:
Postdoctoral Fellowships
Utilisation de la spectroscopie Raman à effet de pointe pour l'étude de réactions chimiques induites par des plasmons de surface
利用拉曼光谱和表面等离激元化学反应研究的点效应
- 批准号:
488104-2016 - 财政年份:2016
- 资助金额:
$ 41.01万 - 项目类别:
Postdoctoral Fellowships
Nanobiocapteurs de résonance des plasmons de surface pour les aminoglycosides
氨基糖苷类表面等离激元共振的纳米生物捕获剂
- 批准号:
495915-2016 - 财政年份:2016
- 资助金额:
$ 41.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Broadband Coupling of Surface Plasmons in Metal Nanoparticles with Slow Photons in WO3 Inverse Opals as a Novel Photon Management Approach for Solar W
金属纳米粒子中的表面等离子体与 WO3 反蛋白石中的慢光子的宽带耦合作为太阳能 W 的新型光子管理方法
- 批准号:
1857816 - 财政年份:2016
- 资助金额:
$ 41.01万 - 项目类别:
Studentship