"Graphene nanophotonics: Smaller, stronger, faster"

“石墨烯纳米光子学:更小、更强、更快”

基本信息

  • 批准号:
    EP/K041215/1
  • 负责人:
  • 金额:
    $ 123.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding and controlling the interaction between light and matter is fundamental to science and technology - from probing entanglement in quantum physics to optical networks for information technology. Using traditional optics, light can only be controlled on length scales down to the wavelength of light, the classical diffraction limit. This limit has huge consequences, setting stringent boundaries for a host of phenomena. In recent years plasmonics has emerged as a means to beat this apparent limit. The key attribute of plasmon resonances, typically observed in nanoparticles of gold and silver, is the ability to concentrate optical energy into volumes well below the diffraction limit. This light focussing property gives rise to many potential applications, from photo thermal treatment of cancer to light harvesting in enhanced solar cells.However, the field of plasmonics currently stands at a cross-road. The enormous potential of plasmonics as a means to manipulate light at the nanoscale is blocked by ohmic losses associated with the metals used; these losses ultimately set limits on light focussing and energy concentration. In this project I will explore a radical alternative by replacing conventional metals with new atomic scale, graphene-like layered materials. The ultimate goal is to overcome the critical limitations which currently hold plasmonics back, and thereby define future directions in the field. The three broad aims are:(1) Smaller - I will study the fundamental limits of energy concentration in plasmonics. Efforts will concentrate on developing and optimising platforms in promising new plasmonic materials based on the atomically layered structure of graphene.(2) Stronger - Energy concentration comes at a heavy price due to high absorption losses, which normally limits the plasmon lifetime to a few short femtoseconds. Recent results suggest absorption losses can be overcome by utilizing amplifying gain materials, which will enable active functionalities in these new plasmonic materials.(3) Faster - Atomic scale materials will bypass the problems associated with absorption, and will transform our ability to manipulate light on ultrafast timescales. This has enormous consequences, with potential applications for switching and nonlinearity, both vital for information processing with light. An ambitious plan is laid out, through which the vision of manipulating light on extreme sub-wavelength length scales will be made possible. This grand-scale project will unlock the true potential of ultrathin plasmonic materials for real-world photonic and optoelectronic devices.
理解和控制光与物质之间的相互作用是科学和技术的基础-从量子物理学中的纠缠探测到信息技术的光网络。使用传统光学,光只能在长度尺度上控制到光波长,即经典的衍射极限。这一限制具有巨大的影响,为许多现象设定了严格的界限。近年来,等离子体已经成为一种突破这一明显限制的手段。通常在金和银的纳米颗粒中观察到的等离子体共振的关键属性是将光能集中到远低于衍射极限的体积中的能力。这种光聚焦特性带来了许多潜在的应用,从癌症的光热治疗到增强型太阳能电池的光收集。然而,等离子体激元学领域目前正处于十字路口。等离子体激元作为在纳米级操纵光的手段的巨大潜力被与所使用的金属相关的欧姆损耗所阻挡;这些损耗最终限制了光聚焦和能量集中。在这个项目中,我将探索一种激进的替代方案,用新的原子级石墨烯状层状材料取代传统金属。最终目标是克服目前阻碍等离子体的关键限制,从而确定该领域的未来发展方向。三个主要目标是:(1)更小-我将研究等离子体激元能量集中的基本限制。工作将集中在开发和优化平台,在有前途的新的等离子体材料的基础上,石墨烯的原子分层结构。(2)更强的能量集中是在一个沉重的代价,由于高吸收损失,这通常限制了等离子体的寿命到几个短飞秒。最近的结果表明,吸收损失可以通过利用放大增益材料来克服,这将使这些新的等离子体材料中的活性功能成为可能。(3)更快-原子尺度的材料将绕过与吸收相关的问题,并将改变我们在超快时间尺度上操纵光的能力。这具有巨大的影响,具有开关和非线性的潜在应用,两者对光的信息处理至关重要。制定了一项雄心勃勃的计划,通过该计划,在极端亚波长长度尺度上操纵光的愿景将成为可能。这个大规模的项目将释放光子等离子体材料在现实世界中的光子和光电器件的真正潜力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the origin of pure optical rotation in twisted-cross metamaterials.
  • DOI:
    10.1038/srep30307
  • 发表时间:
    2016-07-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Barr LE;Díaz-Rubio A;Tremain B;Carbonell J;Sánchez-Dehesa J;Hendry E;Hibbins AP
  • 通讯作者:
    Hibbins AP
Localized plasmons induced by spatial conductivity modulation in graphene
Role of Dielectric Drag in Polaron Mobility in Lead Halide Perovskites
  • DOI:
    10.1021/acsenergylett.7b00717
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Bonn, Mischa;Miyata, Kiyoshi;Zhu, X. -Y.
  • 通讯作者:
    Zhu, X. -Y.
Spatiotemporal refraction of light in an epsilon-near-zero indium tin oxide layer: frequency shifting effects arising from interfaces
  • DOI:
    10.1364/optica.436324
  • 发表时间:
    2021-12-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Bohn, Justus;Luk, Ting Shan;Hendry, Euan
  • 通讯作者:
    Hendry, Euan
All-optical generation of surface plasmons in graphene
  • DOI:
    10.1038/nphys3545
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Constant, T. J.;Hornett, S. M.;Hendry, E.
  • 通讯作者:
    Hendry, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Euan Hendry其他文献

Hyperspectral imaging of microwave metasurfaces with deeply subwavelength resolution
具有亚波长深度分辨率的微波超表面的高光谱成像
  • DOI:
    10.1038/s41467-025-59814-y
  • 发表时间:
    2025-05-17
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Harry Penketh;Cameron P. Gallagher;Michal Mrnka;Christopher R. Lawrence;David B. Phillips;Ian R. Hooper;Euan Hendry
  • 通讯作者:
    Euan Hendry
Super-resolution hyperspectral characterisation of microwave metamaterials
微波超材料的超分辨率高光谱表征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Penketh;Cameron P. Gallagher;M. Mrnka;Ian R. Hooper;Christopher R. Lawrence;David B. Phillips;Euan Hendry
  • 通讯作者:
    Euan Hendry
Localised modes of sub-wavelength hole arrays in thin metal films
金属薄膜中亚波长孔阵列的局域模式
  • DOI:
    10.1117/12.780465
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Parsons;Euan Hendry;Baptiste Auguié;William L. Barnes;J. Sambles
  • 通讯作者:
    J. Sambles

Euan Hendry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Euan Hendry', 18)}}的其他基金

Ultrafast all optical beam steering
超快全光束控制
  • 批准号:
    NE/T014105/1
  • 财政年份:
    2020
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Research Grant
"Computational spectral imaging in the THz band"
“太赫兹波段的计算光谱成像”
  • 批准号:
    EP/S036466/1
  • 财政年份:
    2019
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Research Grant
Non-equilibrium and relaxation phenomena in graphene-based devices
石墨烯基器件中的非平衡和弛豫现象
  • 批准号:
    EP/G041482/1
  • 财政年份:
    2009
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Research Grant
SEMICONDUCTOR SURFACE PLASMONS: A ROUTE TO TUNABLE THZ DEVICES AND SENSORS
半导体表面等离子体激元:可调谐太赫兹器件和传感器的途径
  • 批准号:
    EP/F026757/1
  • 财政年份:
    2008
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Research Grant

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 123.22万
  • 项目类别:
    ARC Future Fellowships
Van der Waals nanophotonics
范德华纳米光子学
  • 批准号:
    2887484
  • 财政年份:
    2023
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Studentship
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Standard Grant
Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
  • 批准号:
    22H00298
  • 财政年份:
    2022
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
  • 批准号:
    10509318
  • 财政年份:
    2022
  • 资助金额:
    $ 123.22万
  • 项目类别:
Topological Photonic Insulators in Silicon Nanophotonics
硅纳米光子学中的拓扑光子绝缘体
  • 批准号:
    558491-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 123.22万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了