Biocomputation of the Links Between Muscle Morphology, Coordination and Injury
肌肉形态、协调性和损伤之间联系的生物计算
基本信息
- 批准号:7496067
- 负责人:
- 金额:$ 29.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptedAdultAffectAlgorithmsAmericanArchitectureAreaArtsAutomobile DrivingAwarenessBehaviorBiologicalBiologyBiomechanicsBiomedical ComputingBiomedical EngineeringBiomedical ResearchBlood VesselsCardiovascular systemCellsCerealsCerebral PalsyChemicalsChildClassClassificationClinicClinicalCodeCollaborationsCollectionCommunitiesComplementComplexComputational algorithmComputer SimulationComputer softwareConditionCoupledCouplesCouplingCustomDataData AnalysesData SetData SourcesDedicationsDevelopmentDisciplineDiseaseDoctor of PhilosophyDocumentationDrug Delivery SystemsDyskinetic syndromeElectrostaticsElementsEngineeringEnsureEnvironmentEquationExhibitsFiberFigs - dietaryFutureGeneral PopulationGenerationsGenetic MedicineGenetics and MedicineGoalsGrantHeadHome environmentHumanImageImageryImaging TechniquesImpairmentIndividualInjuryInstitutionInterventionInvestigationLateralLeadLearningLibrariesLicensingLifeLinkLocalizedLocationLogicMagnetic Resonance ImagingMathematicsMeasurementMeasuresMechanicsMedialMedical DeviceMedical ResearchMethodologyMethodsMissionModelingMolecularMorphologyMotionMovementMuscleMuscle CellsMuscle FibersMuscle strainMusculoskeletalMusculoskeletal DiseasesMyopathyMyosin ATPaseNatureNewsletterNonmuscle Myosin Type IIBOperative Surgical ProceduresOrganismOrthopedicsParkinson DiseasePatientsPatternPerformancePharmaceutical PreparationsPhysicsPhysiologicalPrevention strategyPrincipal InvestigatorProblem SolvingProcessPropertyRNARNA FoldingRangeRateRehabilitation therapyResearchResearch InfrastructureResearch PersonnelResidual stateResourcesRiskRunningScientistSelection CriteriaSimulateSiteSkeletal MuscleSocietiesSoftware EngineeringSoftware ToolsSourceSportsSports MedicineStrokeStructureStudentsSystemTechniquesTendon structureTestingThigh structureTimeTissuesTrainingUnited States National Institutes of HealthUniversitiesValidationWorkadvanced simulationaponeurosisbasebiceps brachii musclebiocomputingbiomedical scientistbody systemcommercializationcomputer frameworkcomputer sciencecomputerized toolsconceptdata modelingdesigndissemination researchexperiencefluid flowgraphical user interfaceimage visualizationin vivoinjuredinjury preventioninnovationinsightinterestmacromoleculemathematical modelmetermillimetermodels and simulationnanometernovelopen sourcephysical propertypreventprogramsrepositoryresearch studyresponsesimulationskeletal movementsoft tissuesoftware developmentsymposiumtheoriestooltool development
项目摘要
DESCRIPTION (provided by applicant): Muscle strain injuries are one of the most common conditions seen in sports medicine clinics. However, methods of treatment are variable and re-injury rates tend to be high which, in part, reflects a lack of fundamental understanding of the factors that influence injury risk. The prevailing theory is that injury occurs as a result of excessive strain of active muscle fibers. The goal of this study is to develop novel biocomputational tools to predict and analyze the strain distributions within skeletal muscles during movements associated with injury. Model predictions will be compared with strain measures obtained using state-of-the-art dynamic magnetic resonance imaging experiments. Once validated, we will use the biocomputational tools to investigate how morphology and coordination influence hamstring injury risk during running. Following are the specific aims. Aim 1 will use a dynamic magnetic resonance imaging technique to measure the strain distributions within the individual hamstring muscles during lengthening contractions, a loading condition commonly associated with injury. Comparisons between muscles will provide new insights into the propensity for hamstring injury to occur in the biceps femoris long head. Aim 2 will build a biocomputational framework to predict muscle strain distributions during movement. The framework will couple finite-element simulations of muscle tissue behavior with dynamic simulations of whole body movement. The methods will be validated by comparing strain predictions with those determined from the dynamic images in Aim 1. We will then use the framework to investigate the relationship between muscle excitations, hamstring tissue strains and skeletal movement during running. Aim 3 will evaluate whether computational models predict re-injury prevention strategies. We will build and validate models of subjects who exhibit residual changes in tissue structures as a result of a previous hamstring injury. We will then use the software framework to identify how movement coordination can be adapted to accommodate injury-induced changes in morphology. This research will establish a biocomputational framework that reveals the complex relationship between muscle morphology, coordination and injury risk, thus providing a new paradigm for identifying rehabilitation and injury prevention strategies. Muscle strain injuries are one of the most common conditions seen in sports medicine clinics. However, methods of treating muscle injuries are variable and re-injury rates tend to be high. This proposal couples novel biocomputational tools and imaging techniques to establish a scientific basis for preventing and rehabilitating hamstring muscle injuries.
描述(由申请人提供):肌肉应变损伤是运动医学诊所中最常见的疾病之一。但是,治疗方法是可变的,而重伤率往往很高,这部分反映了对影响伤害风险的因素的基本理解。流行的理论是,由于活性肌肉纤维过多压力而导致伤害。这项研究的目的是开发新型的生物计算工具,以预测和分析与损伤相关的运动过程中骨骼肌内的应变分布。模型预测将与使用最先进的动态磁共振成像实验获得的应变度量进行比较。一旦验证,我们将使用生物计算工具来研究形态和协调如何影响跑步过程中的绳肌损伤风险。以下是具体目标。 AIM 1将使用动态磁共振成像技术来测量延长收缩期间单个ham绳肌肉内的应变分布,这是一种通常与损伤相关的负载条件。肌肉之间的比较将提供新的见解,以了解股二头肌长头弯曲的倾向。 AIM 2将建立一个生物计算框架,以预测运动过程中的肌肉应变分布。该框架将将肌肉组织行为的有限元模拟与全身运动的动态模拟相结合。该方法将通过将应变预测与AIM 1中的动态图像确定的预测进行比较来验证。然后,我们将使用该框架研究肌肉激发,腿筋组织菌株和跑步过程中骨骼运动之间的关系。 AIM 3将评估计算模型是否预测遭受损害的预防策略。我们将建立和验证由于先前的腿筋损伤而导致组织结构显示残留变化的受试者模型。然后,我们将使用软件框架来确定如何适应运动协调以适应损伤引起的形态变化。这项研究将建立一个生物计算框架,该框架揭示了肌肉形态,协调和伤害风险之间的复杂关系,从而提供了一个新的范式来识别康复和预防伤害策略。肌肉应变是运动医学诊所中最常见的疾病之一。但是,治疗肌肉损伤的方法是可变的,而遭受损害的率往往很高。该建议将新颖的生物计算工具和成像技术融合在一起,以建立防止和修复腿筋肌肉损伤的科学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia Salinas Blemker其他文献
Silvia Salinas Blemker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia Salinas Blemker', 18)}}的其他基金
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10363144 - 财政年份:2022
- 资助金额:
$ 29.72万 - 项目类别:
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10557923 - 财政年份:2022
- 资助金额:
$ 29.72万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10220349 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10478238 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10684930 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
- 批准号:
10268004 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology
自动检测肩部肌肉病理的商业可行机器学习算法的临床评估
- 批准号:
10706901 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
- 批准号:
10495191 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:
10738905 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别: