Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology

自动检测肩部肌肉病理的商业可行机器学习算法的临床评估

基本信息

  • 批准号:
    10706901
  • 负责人:
  • 金额:
    $ 89.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-27 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Rotator cuff repairs are amongst the most performed orthopedic surgeries (>400,000 surgeries in the US per year) but remain a very challenging clinical problem. While surgical repair of the rotator cuff seeks to improve shoulder function and stability, the surgical outcomes vary significantly because, pre-operatively, it is difficult under current evaluative methods to predict which patients will benefit from surgery versus those who will not. The focus of this project is to develop unique technology that replaces current methods to produce a rapid, accurate assessment of rotator cuffs capable of large-scale commercial deployment. There is significant scientific evidence that excessive fat infiltration and atrophy of the rotator cuff muscles lead to poor outcomes because the presence of fatty tissue limits the ability for the muscle to recover and regenerate following tendon reconstruction. While current clinical practice utilizes magnetic resonance imaging (MRI) to evaluate fat infiltration in the rotator cuff using qualitative scoring systems, qualitative scoring has little- to-no correlation with quantitative measures of fat infiltration and atrophy. Incorporating quantitative measurements would dramatically improve clinical treatment decision-making; however, existing methods would require substantial manual input and thus is not clinically viable. A fast and accurate method for segmenting the rotator cuff muscles and fat infiltration is essential for improving outcomes and reducing unnecessary surgeries. During the Phase I period of this project, we successfully developed and validated a deep-learning-based automatic algorithm for quantification of rotator cuff muscle and fatty infiltration from clinical scans. Through the creation of an extensive digital database of both healthy and pathological rotator cuff clinical scans, we developed a novel method to account for variability in scan coverage, which led to the establishment of key rotator cuff muscle metrics that can be derived quickly and precisely from the MR images. We now have a prototype product that is ready for beta-testing. In the Phase II period, we propose to perform a prospective clinical study to determine which MRI-derived muscle metrics that best predict the outcomes of rotator cuff repair surgeries. In Aim 1, we will partner with multiple orthopedic centers to perform pre-operative analysis of rotator cuffs that are being considered for rotator cuff repair surgery, and then relate the pre-operative metrics with post-operative outcomes. In Aim 2, we will develop and refine the user interface and associated metrics that will be ultimately deployed for clinical use. Completion of this project will enable a 510(k) application for market clearance. This project will significantly improve the accuracy of shoulder pathology assessments, thus advancing the diagnosis and treatment of shoulder pathologies, improving the outcomes of costly orthopedic procedures, and potentially even eliminating unnecessary procedures, all of which will improve patient care and lower the associated costs.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silvia Salinas Blemker其他文献

Silvia Salinas Blemker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silvia Salinas Blemker', 18)}}的其他基金

Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
  • 批准号:
    10363144
  • 财政年份:
    2022
  • 资助金额:
    $ 89.19万
  • 项目类别:
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
  • 批准号:
    10557923
  • 财政年份:
    2022
  • 资助金额:
    $ 89.19万
  • 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
  • 批准号:
    10220349
  • 财政年份:
    2021
  • 资助金额:
    $ 89.19万
  • 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
  • 批准号:
    10478238
  • 财政年份:
    2021
  • 资助金额:
    $ 89.19万
  • 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
  • 批准号:
    10684930
  • 财政年份:
    2021
  • 资助金额:
    $ 89.19万
  • 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10268004
  • 财政年份:
    2021
  • 资助金额:
    $ 89.19万
  • 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10495191
  • 财政年份:
    2021
  • 资助金额:
    $ 89.19万
  • 项目类别:
Biotechnology Training Program
生物技术培训计划
  • 批准号:
    10197163
  • 财政年份:
    2020
  • 资助金额:
    $ 89.19万
  • 项目类别:
Biotechnology Training Program
生物技术培训计划
  • 批准号:
    10406348
  • 财政年份:
    2020
  • 资助金额:
    $ 89.19万
  • 项目类别:
Biotechnology Training Program
生物技术培训计划
  • 批准号:
    10620763
  • 财政年份:
    2020
  • 资助金额:
    $ 89.19万
  • 项目类别:

相似海外基金

Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
  • 批准号:
    MR/Y013891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
  • 批准号:
    BB/Y006542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Research Grant
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
  • 批准号:
    23H03323
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
  • 批准号:
    23K08293
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
  • 批准号:
    479570
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
  • 批准号:
    488898
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Operating Grants
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
  • 批准号:
    23K19922
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
  • 批准号:
    10605981
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
  • 批准号:
    10813753
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
  • 批准号:
    10604611
  • 财政年份:
    2023
  • 资助金额:
    $ 89.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了