Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology
自动检测肩部肌肉病理的商业可行机器学习算法的临床评估
基本信息
- 批准号:10706901
- 负责人:
- 金额:$ 89.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-27 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdipose tissueAlgorithmsArtificial Intelligence platformAtrophicClinicalClinical ResearchClinical TreatmentDataData DisplayDatabasesDecision MakingDevelopmentDiagnosisDigital Imaging and Communications in MedicineEvaluationFatty acid glycerol estersGoalsHealthcareHumanImageInfiltrationInstitutionInterventionLeadLegal patentMRI ScansMagnetic Resonance ImagingManualsManuscriptsMarketingMeasurementMeasuresMethodsMuscleMuscular AtrophyNatural regenerationOperative Surgical ProceduresOrthopedic ProceduresOrthopedic SurgeryOrthopedicsOutcomePathologicPathologyPatient CarePatientsPhasePostoperative PeriodProcessReconstructive Surgical ProceduresRotator CuffScanningSecureShoulderSliceSurgeonSystemTechnologyTendon structureTestingTrainingUniversitiesUnnecessary ProceduresUnnecessary SurgeryVirginiaVisualWisconsinWorkartificial intelligence algorithmautomated algorithmautomated segmentationclinical practicecloud basedconvolutional neural networkcostcost outcomesdeep learningdemographicsdigitalexperiencefunctional restorationhealinghealth assessmentimprovedimproved outcomeinnovationmachine learning algorithmnovelnovel strategiesoutcome predictionpatient populationpostoperative recoveryprocedure costprospectiveprototypequality assurancereconstructionrecruitrepairedresearch clinical testingrotator cuff tearsuccesssupraspinatus musclesurgery outcometoolweb site
项目摘要
PROJECT SUMMARY
Rotator cuff repairs are amongst the most performed orthopedic surgeries (>400,000 surgeries in the US per
year) but remain a very challenging clinical problem. While surgical repair of the rotator cuff seeks to improve
shoulder function and stability, the surgical outcomes vary significantly because, pre-operatively, it is difficult
under current evaluative methods to predict which patients will benefit from surgery versus those who will not.
The focus of this project is to develop unique technology that replaces current methods to produce a rapid,
accurate assessment of rotator cuffs capable of large-scale commercial deployment.
There is significant scientific evidence that excessive fat infiltration and atrophy of the rotator cuff muscles
lead to poor outcomes because the presence of fatty tissue limits the ability for the muscle to recover and
regenerate following tendon reconstruction. While current clinical practice utilizes magnetic resonance imaging
(MRI) to evaluate fat infiltration in the rotator cuff using qualitative scoring systems, qualitative scoring has little-
to-no correlation with quantitative measures of fat infiltration and atrophy. Incorporating quantitative
measurements would dramatically improve clinical treatment decision-making; however, existing methods would
require substantial manual input and thus is not clinically viable. A fast and accurate method for segmenting the
rotator cuff muscles and fat infiltration is essential for improving outcomes and reducing unnecessary surgeries.
During the Phase I period of this project, we successfully developed and validated a deep-learning-based
automatic algorithm for quantification of rotator cuff muscle and fatty infiltration from clinical scans. Through the
creation of an extensive digital database of both healthy and pathological rotator cuff clinical scans, we developed
a novel method to account for variability in scan coverage, which led to the establishment of key rotator cuff
muscle metrics that can be derived quickly and precisely from the MR images. We now have a prototype product
that is ready for beta-testing. In the Phase II period, we propose to perform a prospective clinical study to
determine which MRI-derived muscle metrics that best predict the outcomes of rotator cuff repair surgeries. In
Aim 1, we will partner with multiple orthopedic centers to perform pre-operative analysis of rotator cuffs that are
being considered for rotator cuff repair surgery, and then relate the pre-operative metrics with post-operative
outcomes. In Aim 2, we will develop and refine the user interface and associated metrics that will be ultimately
deployed for clinical use. Completion of this project will enable a 510(k) application for market clearance. This
project will significantly improve the accuracy of shoulder pathology assessments, thus advancing the diagnosis
and treatment of shoulder pathologies, improving the outcomes of costly orthopedic procedures, and potentially
even eliminating unnecessary procedures, all of which will improve patient care and lower the associated costs.
项目摘要
肩袖修复是最常进行的骨科手术之一(美国每年有超过400,000例手术,
但仍然是一个非常具有挑战性的临床问题。虽然手术修复肩袖的目的是改善
肩关节功能和稳定性,手术结果差异很大,因为术前,
根据目前的评估方法,预测哪些患者将从手术中受益,哪些患者将不会受益。
该项目的重点是开发独特的技术,以取代目前的方法,
准确评估能够大规模商业部署的肩袖。
有重要的科学证据表明,肩袖肌肉的过度脂肪浸润和萎缩
导致不良结果,因为脂肪组织的存在限制了肌肉恢复的能力,
肌腱重建后再生。虽然目前的临床实践利用磁共振成像
(MRI)使用定性评分系统评估肩袖中的脂肪浸润,定性评分几乎没有-
与脂肪浸润和萎缩的定量测量值之间无相关性。定量分析
测量将大大改善临床治疗决策;然而,现有的方法将
需要大量的手动输入,因此在临床上不可行。一种快速准确的分割方法,
肩袖肌肉和脂肪浸润对于改善结果和减少不必要的手术至关重要。
在这个项目的第一阶段,我们成功地开发和验证了一个基于深度学习的
用于量化临床扫描中肩袖肌肉和脂肪浸润的自动算法。通过
建立一个广泛的健康和病理性肩袖临床扫描的数字数据库,我们开发了
一种新的方法来解释扫描范围的变化,这导致了关键肩袖的建立
可以从MR图像中快速精确地导出肌肉指标。我们现在有了一个原型产品
可以进行测试了在第二阶段,我们建议进行一项前瞻性临床研究,
确定哪些MRI衍生的肌肉指标最能预测肩袖修复手术的结果。在
目标1,我们将与多个骨科中心合作,对肩袖进行术前分析,
考虑进行肩袖修复手术,然后将术前指标与术后指标相关联
结果。在目标2中,我们将开发和完善用户界面和相关指标,
用于临床使用。该项目的完成将使510(k)申请获得市场许可。这
该项目将显著提高肩关节病理评估的准确性,从而推进诊断
和治疗肩部病变,改善昂贵的骨科手术的结果,并可能
甚至消除不必要的程序,所有这些都将改善病人护理并降低相关成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia Salinas Blemker其他文献
Silvia Salinas Blemker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia Salinas Blemker', 18)}}的其他基金
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10363144 - 财政年份:2022
- 资助金额:
$ 89.19万 - 项目类别:
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10557923 - 财政年份:2022
- 资助金额:
$ 89.19万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10220349 - 财政年份:2021
- 资助金额:
$ 89.19万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10478238 - 财政年份:2021
- 资助金额:
$ 89.19万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10684930 - 财政年份:2021
- 资助金额:
$ 89.19万 - 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
- 批准号:
10268004 - 财政年份:2021
- 资助金额:
$ 89.19万 - 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
- 批准号:
10495191 - 财政年份:2021
- 资助金额:
$ 89.19万 - 项目类别:
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 89.19万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 89.19万 - 项目类别:
Research Grant
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Operating Grants
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Adipose Tissue T Cell Polarization and Metabolic Health in Persons Living with HIV
HIV 感染者的脂肪组织 T 细胞极化和代谢健康
- 批准号:
10619176 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 89.19万 - 项目类别:














{{item.name}}会员




