Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
基本信息
- 批准号:10495191
- 负责人:
- 金额:$ 5.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-27 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdipose tissueAdoptionAgeAge-YearsAlgorithmsAreaAtrophicClientClinicalClinical TreatmentCollectionComputer Vision SystemsComputer softwareDataDecision MakingDevelopmentDiagnosisDigital Imaging and Communications in MedicineEvaluationFatty acid glycerol estersHealthHealthcareHumanImageIndividualInfiltrationInterventionLeadLegal patentLower ExtremityMRI ScansMachine LearningMagnetic Resonance ImagingManualsMeasurementMeasuresMedicalMethodsModelingMuscleMuscular AtrophyNatural regenerationOperative Surgical ProceduresOrthopedic ProceduresOrthopedicsOutcomeOutputPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePhasePrevalenceProcessProtocols documentationRecoveryRotator CuffScanningShoulderSkeletal MuscleSliceSystemTechnologyTendon structureTestingTimeTrainingUnnecessary ProceduresUnnecessary SurgeryVisualWorkautomated algorithmautomated segmentationbaseclinical practiceconvolutional neural networkcostcost outcomesdeep learningexperiencefunctional restorationhealingimaging Segmentationimprovedimproved outcomeinnovationlearning strategypatient populationprototyperadiologistreconstructionrepairedrotator cuff tearsegmentation algorithmsuccesssupraspinatus musclesurgery outcometechnological innovationtool
项目摘要
PROJECT SUMMARY
Rotator cuff tears are highly problematic for large patient populations, and therefore remain a very challenging
clinical problem. Roughly 20% to 50% of those 60 years of age have a known rotator cuff tear and the prevalence
only increases with age. While surgical reconstruction of the rotator cuff seeks to improve shoulder function and
stability, the degrees of successful surgical outcomes vary significantly. These widely differing outcomes are
because, pre-operatively, it is difficult under current evaluative methods to predict which patients will benefit from
surgery versus those who will not. The focus of this project is to develop unique technology that replaces current
methods to produce a rapid, accurate assessment of rotator cuffs capable of large-scale commercial deployment.
From a clinical perspective, there is significant scientific evidence that excessive fat infiltration and atrophy of
the rotator cuff muscles lead to poor outcomes because the presence of fatty tissue limits the ability for the
muscle to recover and regenerate following tendon reconstruction. While current clinical practice utilizes
magnetic resonance imaging (MRI) to evaluate fat infiltration in the rotator cuff using qualitative scoring systems,
previous studies have established that qualitative scoring has a relatively low correlation with quantitative
measures of fat infiltration and atrophy. Incorporating quantitative measurements would dramatically improve
clinical treatment decision-making. However, such evaluation under existing methods would require substantial
manual input and thus is not clinically viable. A fast and accurate method for segmenting the rotator cuff muscles
and quantifying fat infiltration is essential for improving outcomes and reducing unnecessary surgeries.
This proposal aims to leverage Springbok’s previous technological innovations in machine learning image
segmentation to develop an algorithm capable of fast, accurate assessment of rotator cuff muscle atrophy
quantification and fat infiltration. The algorithm will be developed so that it can ultimately be seamlessly integrated
into the current clinical workflow, thereby not requiring any additional clinician time, and in fact is likely to
materially reduce that time. In Aim 1, we will develop and validate a deep-learning-based automatic algorithm
for quantification of rotator cuff muscle volumes and fatty infiltration. In Aim 2, we will develop a software
prototype to incorporate the algorithm into clinical workflow to support the decision-making process. Completion
of this Phase 1 project will lead to a prototype product that is ready for beta-testing during Phase II at multiple
Orthopaedic centers, enabling a 510(k) application for market clearance. This project will significantly improve
the accuracy of shoulder pathology assessments, thus advancing the diagnosis and treatment of shoulder
pathologies, improving the outcomes of costly Orthopaedic procedures, and potentially even eliminating
unnecessary procedures, all of which will improve patient care and lower the associated costs.
项目总结
肩袖撕裂对于大量患者来说是非常有问题的,因此仍然是一个非常具有挑战性的问题。
临床问题。在60岁的人中,大约有20%到50%的人有已知的肩袖撕裂和患病率
只随着年龄的增长而增加。虽然肩袖的外科重建寻求改善肩部功能和
稳定性,手术结果的成功程度差别很大。这些截然不同的结果是
因为,在手术前,在目前的评估方法下,很难预测哪些患者将受益于
手术对抗那些不愿做手术的人。该项目的重点是开发独特的技术,以取代现有的
方法对能够大规模商业部署的肩袖进行快速、准确的评估。
从临床的角度来看,有重要的科学证据表明,过度的脂肪渗透和萎缩
肩袖肌肉会导致不良的结果,因为脂肪组织的存在限制了
肌腱重建后恢复和再生肌肉。虽然目前的临床实践利用
核磁共振成像(MRI)使用定性评分系统评估肩袖中的脂肪渗透,
以往的研究已经证实,定性评分与定量评分的相关性相对较低
脂肪渗透和萎缩的测量。纳入量化测量将显著改善
临床治疗决策。然而,在现有方法下,这种评估将需要大量资金
人工输入,因此在临床上不可行。一种快速准确的肩袖肌肉分割方法
量化脂肪渗透对于改善结果和减少不必要的手术至关重要。
这项提议旨在利用跳羚之前在机器学习图像方面的技术创新
开发一种能够快速、准确地评估肩袖肌肉萎缩的分割算法
定量和脂肪渗透。将开发该算法,使其最终可以无缝集成
进入当前的临床工作流程,从而不需要任何额外的临床医生时间,并且事实上很可能
大大缩短了这段时间。在目标1中,我们将开发并验证一个基于深度学习的自动算法
用于量化肩袖肌肉体积和脂肪渗透。在目标2中,我们将开发一个软件
将算法整合到临床工作流程中以支持决策过程的原型。完成
该第一阶段项目的第一阶段将产生一个原型产品,该原型产品在第二阶段期间将在多个
整形外科中心,支持510(K)申请市场许可。这一项目将显著改善
提高肩关节病理评估的准确性,促进肩关节的诊断和治疗
病理,改善昂贵的整形外科手术的结果,甚至有可能消除
不必要的手术,所有这些都将改善患者护理并降低相关成本。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Objective analysis of partial three-dimensional rotator cuff muscle volume and fat infiltration across ages and sex from clinical MRI scans.
- DOI:10.1038/s41598-023-41599-z
- 发表时间:2023-09-01
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia Salinas Blemker其他文献
Silvia Salinas Blemker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia Salinas Blemker', 18)}}的其他基金
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10363144 - 财政年份:2022
- 资助金额:
$ 5.14万 - 项目类别:
Modeling to design optimized estrogen-specific muscle regeneration treatment
建模以设计优化的雌激素特异性肌肉再生治疗
- 批准号:
10557923 - 财政年份:2022
- 资助金额:
$ 5.14万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10220349 - 财政年份:2021
- 资助金额:
$ 5.14万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10478238 - 财政年份:2021
- 资助金额:
$ 5.14万 - 项目类别:
A quantitative framework to examine sex differences in musculoskeletal scaling and function
检查肌肉骨骼尺度和功能性别差异的定量框架
- 批准号:
10684930 - 财政年份:2021
- 资助金额:
$ 5.14万 - 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
- 批准号:
10268004 - 财政年份:2021
- 资助金额:
$ 5.14万 - 项目类别:
Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology
自动检测肩部肌肉病理的商业可行机器学习算法的临床评估
- 批准号:
10706901 - 财政年份:2021
- 资助金额:
$ 5.14万 - 项目类别:
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 5.14万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 5.14万 - 项目类别:
Research Grant
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Operating Grants
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
- 批准号:
10605981 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 5.14万 - 项目类别: