Informatics/modeling/extend/NMR structure determination

信息学/建模/扩展/NMR结构测定

基本信息

  • 批准号:
    7755643
  • 负责人:
  • 金额:
    $ 7.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-15 至 2010-02-14
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: The long-term goal of this research is to provide significant speed-ups in understanding proteins through development of novel physics-based models in informatics. Proteins are involved in a large array of biological functions and their association with numerous diseases and disorders makes the timely understanding of their structure a subject with significant relevance to human health. As a step toward understanding proteins, the development of a broad inventory of protein structures and their rapid analysis is designated as a critical goal of structural biology. Experimental methods will continue to play a critical role, as a large number of novel protein folds remain unexplored. NMR spectroscopy is a key experimental tool in analyzing protein structures and a strong need for streamlining and extending its reach exists. The primary research focus of this work is the investigation and advancement of tools that will lead to significant speedups in understanding protein structures by building a probabilistic framework that integrates informatics and physical models. The strategy is to combine the use of informatics tools and physical modeling that is needed in order to rapidly evaluate, merge multiple data sources, and facilitate efficient building and analysis of protein inventories. The proposed approach has already lead to innovative tools that have demonstrated quantifiable advances in the practice of NMR structure determination. The applicant has three research goals during this grant period: 1) investigate approaches to combining present tools developed by the PI into a complete paradigm with the aim of addressing fast and robust structure determination of small to moderate size proteins, 2) investigate distillation and extension of methods into a set of core tools that could form the basis for novel tools for rapid determination of protein folds and structure of larger proteins, and 3) take exploratory steps toward understanding the question of "how much each new tool contributes to our understanding of protein space." The basic idea behind these methods is to devise a family of physical models and use informatics tools to find the most 'successful' model. These tools will facilitate production of timely information regarding proteins' functions by speeding up and streamlining the use of experimental data in structure determination. The accelerated progress toward understanding proteins will have a direct and significant impact on advancing the safeguards of human health.
产品说明: 这项研究的长期目标是通过在信息学中开发新的基于物理学的模型来显著加快对蛋白质的理解。蛋白质参与了大量的生物功能,它们与许多疾病和病症的关联使得及时了解它们的结构成为与人类健康具有重大相关性的主题。作为理解蛋白质的一个步骤,开发一个广泛的蛋白质结构清单及其快速分析被指定为结构生物学的一个关键目标。实验方法将继续发挥关键作用,因为大量的新蛋白质折叠仍然未被探索。NMR光谱是分析蛋白质结构的关键实验工具,并且存在简化和扩展其范围的强烈需求。这项工作的主要研究重点是调查和工具的进步,这将导致显着加速理解蛋白质结构,通过建立一个概率框架,集成信息学和物理模型。该策略是联合收割机的使用信息学工具和所需的物理建模,以快速评估,合并多个数据源,并促进有效的建设和分析蛋白质库存。所提出的方法已经导致创新的工具,已经证明了量化的进展,在实践中的NMR结构测定。申请人在此资助期间有三个研究目标:1)研究将PI开发的现有工具结合到完整范式中的方法,旨在解决小到中等大小蛋白质的快速和稳健的结构确定,(二)研究方法的蒸馏和扩展,使其成为一套核心工具,可以为快速确定蛋白质折叠和结构的新工具奠定基础。更大的蛋白质,以及3)采取探索性的步骤来理解“每个新工具对我们理解蛋白质空间有多大贡献”的问题。“这些方法背后的基本思想是设计一系列物理模型,并使用信息学工具找到最‘成功’的模型。这些工具将通过加速和简化结构确定中实验数据的使用,促进及时产生有关蛋白质功能的信息。对蛋白质理解的加速进展将对促进人类健康的保障产生直接和重大的影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field.
使用最佳参数化力场进行蛋白质结构计算和质量评估的化学位移预测。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAMID R EGHBALNIA其他文献

HAMID R EGHBALNIA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAMID R EGHBALNIA', 18)}}的其他基金

NMRbox: Bayesian Analytics
NMRbox:贝叶斯分析
  • 批准号:
    10406894
  • 财政年份:
    2015
  • 资助金额:
    $ 7.87万
  • 项目类别:
NMRbox: Bayesian Analytics
NMRbox:贝叶斯分析
  • 批准号:
    10652475
  • 财政年份:
    2015
  • 资助金额:
    $ 7.87万
  • 项目类别:
Informatics/modeling/extend/NMR structure determination
信息学/建模/扩展/NMR结构测定
  • 批准号:
    7021075
  • 财政年份:
    2006
  • 资助金额:
    $ 7.87万
  • 项目类别:
Informatics/modeling/extend/NMR structure determination
信息学/建模/扩展/NMR结构测定
  • 批准号:
    7359619
  • 财政年份:
    2006
  • 资助金额:
    $ 7.87万
  • 项目类别:
Informatics/modeling/extend/NMR structure determination
信息学/建模/扩展/NMR结构测定
  • 批准号:
    7186620
  • 财政年份:
    2006
  • 资助金额:
    $ 7.87万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了