A Physical Characterisation of Assembly Mechanisms and Light Transmission in Cornea.

角膜组装机制和光传输的物理表征。

基本信息

  • 批准号:
    EP/F034970/1
  • 负责人:
  • 金额:
    $ 106.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The cornea is the front clear part of the eye. It is essential for proper vision because it lets in light and focuses it on the retina at the back of the eye. Thus, a sharp image is formed and we can see properly. The cornea is a special tissue because it is transparent, and in this respect it is unlike other related tissues in the body -- the tendons that link our bones and muscles or the sclera (the white of the eye), for example -- that are made of similar components. Scientists believe that the cornea is transparent because the protein called collagen that forms much of the cornea is mostly in the form of long, thin rope-like structures called fibrils. Moreover, these collagen fibrils are formed into a very well defined arrangement that lets light through. If this arrangement breaks down the cornea looses its transparency and becomes cloudy. As a result vision is severely compromised.We propose a programme of research that uses new physics-based techniques to investigate the internal fine structure of the cornea and how it develops. We will use the chick cornea as a model system because it has been studied many times before. We will compare our structural data with measurements of corneal transparency that our colleagues in the United States will obtain in conjunction with us. We will also use our techniques to study new artificial corneas that are being made in the laboratory by scientists in Japan; by discovering how the collagen fibrils assemble in the bioengineered cornea compared to in the naturally developing cornea we can help guide efforts to make transparent, functional corneas.First, we will devise new ways of preparing cornea tissue for examination at very high magnification in an electron microscope. These preparation methods will use high-pressure freezing technology so that when placed in the electron microscope thin sections of the cornea will retain native structure much better than after other conventional chemical ways of preparing the tissue. The ultrastructure of collagen fibrils can then be examined at a magnification of up to 50,000 times. This information essential if we are to create mathematical models of why the cornea is transparent. We also point out that the development of this new electron microscopy technique will also be of great use to scientists in other fields who investigate other biological tissues, systems and components.We will also use a technique called x-ray diffraction to study corneal ultrastructure using more focused x-ray beams than have ever been used before to study corneal development. The x-rays we will use will be very intense and produced by synchrotron sources. These are highly specialised, large particle accelerators and we will conduct experiments with colleagues in Japan, in France as well as here in the UK. The data will provide structural information at a much better resolution than has previously been possible. Again, we will link structural data with transparency to understand what makes the cornea transparent.Interestingly, scientists suspect that molecules with sulphate components in the cornea influence the collagen fibrils and force them to take up the special arrangement that allows corneal transparency. Sulphate levels have not been measured directly in cornea previously because this is very difficult to do. We will bring astrophysical spectroscopy expertise ordinarily used in space research to quantify sulphate changes in the cornea as it develops. This will teach us how sulphated molecules control collagen arrangement.Overall, the research will teach us how the cornea assembles itself during development and when it is engineered in the laboratory, and why the cornea is transparent. We will also develop new technologies in biophysics research that other scientists can benefit from.
角膜是眼睛前部透明的部分。它对正常的视力至关重要,因为它让光线进入并将其聚焦在眼睛后部的视网膜上。从而形成清晰的图像,我们可以正确地看到。角膜是一种特殊的组织,因为它是透明的,在这方面,它不像身体中的其他相关组织-例如连接我们骨骼和肌肉的肌腱或巩膜(眼睛的白色)-由类似的成分组成。科学家们认为,角膜是透明的,因为形成角膜的大部分蛋白质称为胶原蛋白,主要是长而细的绳状结构,称为原纤维。此外,这些胶原蛋白原纤维形成非常明确的排列,可以让光线通过。如果这种排列被破坏,角膜就会失去透明度并变得浑浊。因此,视力严重受损。我们提出了一个研究计划,使用新的物理学为基础的技术来调查角膜的内部精细结构及其如何发展。我们将使用鸡角膜作为模型系统,因为它已经被研究了很多次。我们将把我们的结构数据与我们在美国的同事将与我们一起获得的角膜透明度的测量结果进行比较。我们还将利用我们的技术研究日本科学家在实验室中制造的新型人工角膜。通过发现生物工程角膜中的胶原纤维与自然发育角膜中的胶原纤维的组装方式,我们可以帮助指导制造透明的功能性角膜的努力。首先,我们将设计新的方法来制备角膜组织,以便在电子显微镜中进行非常高的放大率检查。这些制备方法将使用高压冷冻技术,以便当放置在电子显微镜下时,角膜的薄切片将比其他常规化学方法制备组织后更好地保留天然结构。然后可以在高达50,000倍的放大倍数下检查胶原纤维的超微结构。如果我们要建立角膜透明的数学模型,这些信息是必不可少的。我们还指出,这种新的电子显微镜技术的发展也将是非常有用的科学家在其他领域谁研究其他生物组织,系统和组件。我们还将使用一种技术称为X射线衍射研究角膜超微结构使用更集中的X射线束比以往任何时候都用来研究角膜的发展。我们将使用的X射线将是非常强烈的,由同步加速器源产生。这些都是高度专业化的大型粒子加速器,我们将与日本、法国和英国的同事一起进行实验。这些数据将以比以前更好的分辨率提供结构信息。同样,我们将把结构数据与透明度联系起来,以了解是什么使角膜透明。有趣的是,科学家们怀疑角膜中含有硫酸盐成分的分子会影响胶原纤维,迫使它们采取特殊的排列方式,从而使角膜透明。以前没有直接测量角膜中的硫酸盐水平,因为这是非常困难的。我们将带来通常用于太空研究的天体物理光谱学专业知识,以量化角膜中硫酸盐的变化。这将告诉我们硫酸化分子如何控制胶原蛋白的排列。总的来说,这项研究将告诉我们角膜在发育过程中如何自我组装,以及在实验室中如何进行工程改造,以及为什么角膜是透明的。我们还将开发生物物理学研究的新技术,使其他科学家受益。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The corneal endothelium in development, disease and surgery
角膜内皮的发育、疾病和手术
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jones Frances E.
  • 通讯作者:
    Jones Frances E.
A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea.
  • DOI:
    10.1016/j.matbio.2014.06.004
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Ho, Leona T. Y.;Harris, Anthony M.;Tanioka, Hidetoshi;Yagi, Naoto;Kinoshita, Shigeru;Caterson, Bruce;Quantock, Andrew J.;Young, Robert D.;Meek, Keith M.
  • 通讯作者:
    Meek, Keith M.
Differential relative sulfation of Keratan sulfate glycosaminoglycan in the chick cornea during embryonic development.
胚胎发育过程中鸡角膜中硫酸角质素糖胺聚糖的相对硫酸化差异。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Quantock其他文献

選択的Rhoキナーゼ阻害剤の角膜実質創傷治癒への影響
选择性Rho激酶抑制剂对角膜基质伤口愈合的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本真弓;奥村直毅;上野盛夫;坂本雄二;木下茂;Robert Young;Andrew Quantock;小泉範子
  • 通讯作者:
    小泉範子
角膜内皮の小胞体ストレス応答におけるmitochondria-associated ER membranesの関与
线粒体相关内质网膜参与角膜内皮内质网应激反应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松本紗季;奥村直毅;奥田浩和;Robert Young;Andrew Quantock;小泉範子
  • 通讯作者:
    小泉範子

Andrew Quantock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Quantock', 18)}}的其他基金

Nanoscale Structural Characterisations of Ocular Tissues Derived from Human iPS Cells
人类 iPS 细胞来源的眼组织的纳米级结构表征
  • 批准号:
    BB/X000966/1
  • 财政年份:
    2023
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
The Genomic Basis of Human Induced Pluripotent Stem (iPS) Cell Differentiation into Eye-Like Tissues.
人类诱导多能干细胞 (iPS) 分化为类眼组织的基因组基础。
  • 批准号:
    BB/S015981/1
  • 财政年份:
    2019
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Targeted Drug Delivery to the Cornea of the Eye Via Medicated Contact Lenses and Mucoadhesive Thin Films
通过药用隐形眼镜和粘膜粘附薄膜将靶向药物递送至眼角膜
  • 批准号:
    BB/S004874/1
  • 财政年份:
    2019
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
A mechanistic understanding of corneal pathobiology and the development of therapeutic strategies for the treatment of connective tissue disorders
对角膜病理学的机制理解和结缔组织疾病治疗策略的开发
  • 批准号:
    MR/S037829/1
  • 财政年份:
    2019
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Japan Partnering Award: The Generation of Eye Tissues from Human Induced Pluripotent Stem (iPS) Cells.
日本合作奖:利用人类诱导多能干细胞 (iPS) 生成眼组织。
  • 批准号:
    BB/R021244/1
  • 财政年份:
    2018
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
The Development of Eye Tissues via Human Induced Pluripotent Stem (iPS) Cells.
通过人类诱导多能干 (iPS) 细胞发育眼组织。
  • 批准号:
    BB/P017843/1
  • 财政年份:
    2018
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Targeted Drug Delivery to the Cornea of the Eye Via Thin-Film Slow Release Technology.
通过薄膜缓释技术将靶向药物输送至眼角膜。
  • 批准号:
    BB/N022106/1
  • 财政年份:
    2017
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
A Freedom to Operate Proposal to Research Targeted Drug Delivery to the Cornea of the Eye Via Thin-Film Slow Release Technology.
自由实施研究通过薄膜缓释技术将靶向药物输送到眼角膜的提案。
  • 批准号:
    BB/P011969/1
  • 财政年份:
    2016
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
The Cellular Control of Corneal Development and Transparency and Generation of Biomimetic Corneal Tissue.
角膜发育和透明度的细胞控制以及仿生角膜组织的生成。
  • 批准号:
    BB/M025349/1
  • 财政年份:
    2015
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant

相似海外基金

A Pathway to the Confirmation and Characterisation of Habitable Alien Worlds
确认和描述宜居外星世界的途径
  • 批准号:
    MR/Y011759/1
  • 财政年份:
    2025
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Fellowship
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Collaborative R&D
Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Molecular characterisation of pore-forming proteins as pest control agents
作为害虫防治剂的成孔蛋白的分子表征
  • 批准号:
    DE240100885
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Discovery Early Career Researcher Award
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Mechanistic characterisation of enhancer hijacking: identifying essential and targetable chromatin interactions
增强子劫持的机制表征:识别必要的和可靶向的染色质相互作用
  • 批准号:
    MR/Y011902/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Structural Characterisation of Bacteriophage Proteins Involved in Host Hijacking of Enterococcus Species
参与肠球菌宿主劫持的噬菌体蛋白的结构表征
  • 批准号:
    BB/Z515188/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Fellowship
NanoRAM: Emerging Nanotools for Soft Matter Characterisation and Manipulation
NanoRAM:用于软物质表征和操纵的新兴纳米工具
  • 批准号:
    EP/Y032306/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Research Grant
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
  • 批准号:
    LE240100036
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Characterisation of a novel disease immunity pathway in plants
植物新型疾病免疫途径的表征
  • 批准号:
    DP240102982
  • 财政年份:
    2024
  • 资助金额:
    $ 106.65万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了