Ophthalmic imaging of small animal models of ocular diseases

眼部疾病小动物模型的眼科成像

基本信息

  • 批准号:
    7755760
  • 负责人:
  • 金额:
    $ 18.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-05 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Small animal models play an irreplaceable role in the study of ocular diseases, but the need for structural information at different stages of a disease leads to time-consuming histology, inefficient use of animals, and large variability. Our long-term objective is to develop a high throughput testing facility that provides quantitative, non-invasive, high resolution, structural imaging of animal models of ophthalmic diseases. By high throughput we mean the acquisition of images and the extraction of desired information as efficiently and rapidly as possible, thereby maximizing the scientific yield of the facility. The facility will use a novel investigator-controlled animal alignment system that allows rapid selection of the imaged retinal areas together with ultra-high resolution spectral-domain OCT (optical coherence tomography) to provide 3D retinal images. To evaluate disease-induced damage and progression and to monitor treatment effects, the cell layers of the retina will be quantified using 3D segmentation of the OCT images. This project promises to significantly reduce the number of animals needed to achieve many research objectives. Collaborating scientists using small animal models for their research will provide valuable feedback to enhance the facility's productivity. The specific aims of the proposed research are to: 1. Design and build a novel animal alignment system together with a slit lamp biomicroscope based ultra-high resolution spectral-domain OCT and robust interchangeable optical probes for high throughput imaging of the anterior segment and retina of small animals. The animal alignment system that allows rapid selection of the imaging areas of interest. 2. Develop 3-D segmentation algorithms for (1) automatic segmentation of the RNFL of the retina and (2) automatic segmentation of the boundaries of retinal tumor. These algorithms will provide quantitative information (e.g., RNFL thickness maps and tumor volume) about the change that occurs at different stages of a disease. 3. Apply the system and algorithms to studying animal models of ocular diseases. We will first focus on three rodent models: (1) we will image changes in retinal structure in a rat glaucoma model, including changes of optic nerve and RNFL thickness at different stages of glaucoma damage; (2) We will quantitatively evaluate progression and treatment effect in a mouse model of retinoblastoma; (3) We will study the status and prognosis of a murine model of corneal transplant. PUBLIC HEALTH RELEVANCE: The proposed research will provide a powerful tool that will greatly accelerate the research on ocular diseases like glaucoma, retinoblastoma, and corneal transplant. It promises not only to reduce the number of animals required but also possible longitudinal studies that are currently impossible to conduct.
描述(申请人提供):小动物模型在眼部疾病的研究中发挥着不可替代的作用,但对疾病不同阶段的结构信息的需求导致了耗时的组织学、动物的低效利用和巨大的变异性。我们的长期目标是开发一种高通量测试设备,为眼科疾病的动物模型提供定量、非侵入性、高分辨率、结构成像。我们所说的高吞吐量是指尽可能高效和快速地获取图像和提取所需信息,从而最大限度地提高设施的科学产量。该设施将使用一种由研究人员控制的新型动物对准系统,该系统可以快速选择成像的视网膜区域,并使用超高分辨率光谱域OCT(光学相干断层扫描)来提供3D视网膜图像。为了评估疾病引起的损害和进展并监测治疗效果,将使用OCT图像的3D分割来量化视网膜的细胞层。该项目承诺将大大减少实现许多研究目标所需的动物数量。合作的科学家使用小动物模型进行研究,将提供有价值的反馈,以提高该设施的生产率。本研究的具体目的是:1.设计和构建一种新型的动物定位系统,结合基于裂隙灯生物显微镜的超高分辨率光谱域OCT和坚固的可互换光学探头,用于对小动物的前节和视网膜进行高通量成像。动物对齐系统,允许快速选择感兴趣的成像区域。2.开发了用于(1)视网膜RNFL的自动分割和(2)视网膜肿瘤边界的自动分割的三维分割算法。这些算法将提供有关疾病不同阶段发生的变化的定量信息(例如,RNFL厚度图和肿瘤体积)。3.将该系统和算法应用于眼病动物模型的研究。我们首先将重点放在三个啮齿动物模型上:(1)我们将成像大鼠青光眼模型中视网膜结构的变化,包括青光眼损害不同阶段的视神经和RNFL厚度的变化;(2)我们将定量评估视网膜母细胞瘤小鼠模型的进展和治疗效果;(3)我们将研究小鼠角膜移植模型的状况和预后。公共卫生相关性:拟议的研究将提供一个强大的工具,将极大地加速青光眼、视网膜母细胞瘤和角膜移植等眼部疾病的研究。它不仅承诺减少所需的动物数量,还可能减少目前不可能进行的纵向研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuliang Jiao其他文献

Shuliang Jiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuliang Jiao', 18)}}的其他基金

Quantitative multimodal retinal imaging
定量多模态视网膜成像
  • 批准号:
    10211698
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:
Quantitative multimodal retinal imaging
定量多模态视网膜成像
  • 批准号:
    10625417
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:
Quantitative multimodal retinal imaging
定量多模态视网膜成像
  • 批准号:
    10436240
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:
Imaging the functional biomarker of photoreceptors
光感受器功能生物标志物成像
  • 批准号:
    9239662
  • 财政年份:
    2017
  • 资助金额:
    $ 18.82万
  • 项目类别:
Imaging the functional biomarker of photoreceptors
光感受器功能生物标志物成像
  • 批准号:
    9893878
  • 财政年份:
    2017
  • 资助金额:
    $ 18.82万
  • 项目类别:
Ophthalmic imaging of small animal models of ocular diseases
眼部疾病小动物模型的眼科成像
  • 批准号:
    7512280
  • 财政年份:
    2008
  • 资助金额:
    $ 18.82万
  • 项目类别:
Ophthalmic imaging of small animal models of ocular diseases
眼部疾病小动物模型的眼科成像
  • 批准号:
    7681660
  • 财政年份:
    2008
  • 资助金额:
    $ 18.82万
  • 项目类别:

相似国自然基金

骨髓基质干细胞移植对AD(Alzheimer disease)小鼠海马及额叶神经细胞死亡干预的实验研究
  • 批准号:
    81301089
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
  • 批准号:
    81000622
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
  • 批准号:
    31060293
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
Batten Disease (BD)神经元退化病理机制的研究
  • 批准号:
    30900802
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
  • 批准号:
    30960334
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Developing a metrological framework for assessment of image-based Artificial Intelligence systems for disease detection - 22HLT05 MAIBAI
开发用于评估基于图像的疾病检测人工智能系统的计量框架 - 22HLT05 MAIBAI
  • 批准号:
    10084147
  • 财政年份:
    2023
  • 资助金额:
    $ 18.82万
  • 项目类别:
    EU-Funded
Developing a Metrological framework for Assessment of Image-Based Artificial Intelligence systems for disease detection
开发用于评估基于图像的疾病检测人工智能系统的计量框架
  • 批准号:
    10088801
  • 财政年份:
    2023
  • 资助金额:
    $ 18.82万
  • 项目类别:
    EU-Funded
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Realising the potential of retinal image analysis via AI methods for early detection of brain disease in the community
通过人工智能方法实现视网膜图像分析在社区早期检测脑部疾病方面的潜力
  • 批准号:
    2887450
  • 财政年份:
    2023
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Studentship
DeepAD: An automated and interpretable machine learning pipeline for image analyses of biomarkers in Alzheimer's disease
DeepAD:一种自动化且可解释的机器学习管道,用于阿尔茨海默病生物标志物的图像分析
  • 批准号:
    22K15658
  • 财政年份:
    2022
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10501804
  • 财政年份:
    2022
  • 资助金额:
    $ 18.82万
  • 项目类别:
Image-based cerebrovascular network snythesis(iCNS) to model Alzheimer's Disease
基于图像的脑血管网络合成(iCNS)来模拟阿尔茨海默病
  • 批准号:
    10561232
  • 财政年份:
    2022
  • 资助金额:
    $ 18.82万
  • 项目类别:
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10933186
  • 财政年份:
    2022
  • 资助金额:
    $ 18.82万
  • 项目类别:
Development of transcranial magnetic stimulation therapy and image analysis method for Parkinson's disease
帕金森病经颅磁刺激疗法及图像分析方法的发展
  • 批准号:
    22K11460
  • 财政年份:
    2022
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimation of sound speed distribution in vivo for improvement of ultrasonic image quality and quantitative diagnosis of fatty liver disease
估计体内声速分布以提高超声图像质量和脂肪肝疾病的定量诊断
  • 批准号:
    21K14166
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了