Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction

通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像

基本信息

  • 批准号:
    10501804
  • 负责人:
  • 金额:
    $ 48.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive impairments, and behavioral disorders. 6.2 million people aged 65 and older are living with AD in the United States in 2021. Earlier diagnosis of AD holds particular significance as therapies are most effective during the pre-symptomatic stages before irreversible brain damage has occurred. Tau neurofibrillary tangles (NFTs), accumulating decades before symptomatic onset, can indicate the pre-symptomatic stages. According to Braak staging, tau NFTs start from transentorhinal, then spreading to hippocampus and other cortices at later stages. Detecting tau NFTs during early stages and clearly resolving their patterns is essential for early diagnosis and treatment monitoring of AD. With recent breakthroughs in tau tracer developments, Positron Emission Tomography (PET) can detect accumulation of tau NFTs in vivo. However, due to signal-to-noise ratio (SNR) and resolution limits of PET, accurate recovery of tau retention patterns in thin cortical regions is difficult. This is especially true for early stages when tau signal is weak. Additionally, recent longitudinal studies show that the accumulation change of tau deposits detected by PET is around 3 to 6 % per year for the AD group, and less for the preclinical AD group. This small annual change further challenges the signal detectability of current PET systems. Furthermore, 18F-MK-6240 is a newly developed tau tracer with higher affinity to tau NFTs and no off- target bindings near early Braak-staging regions, which makes it highly promising for early AD diagnosis. However, one issue with 18F-MK-6240 is the off-target bindings in the meninges. Given the thin nature of the cortical ribbon and its proximity to the meninges, quantitative accuracy of tau accumulation is significantly compromised. Consequently, there are unmet needs to further improve PET resolution and SNR for tau imaging. This grant application proposes deep learning (DL)-based image reconstruction methods that can improve the resolution and signal-to-noise ratio (SNR) of tau imaging. The four specific aims of this proposal are (1) to develop DL-based static PET image reconstruction; (2) to develop DL-based image reconstruction for dynamic PET; (3) to develop frameworks that can rapidly produce high-quality parametric images; and (4) to apply the proposed frameworks to 18F-MK-6240 imaging datasets. We expect the integrated outcome of the specific aims will be robust and clinically effective frameworks that can generate static and parametric images with improved resolution and SNR from static and simplified dynamic tau PET imaging.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuang Gong其他文献

Kuang Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuang Gong', 18)}}的其他基金

Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10933186
  • 财政年份:
    2022
  • 资助金额:
    $ 48.06万
  • 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
  • 批准号:
    10206141
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
Correction of Partial Volume Effects in PET for Alzheimer's Disease Using Unsupervised Deep Learning
使用无监督深度学习校正阿尔茨海默病 PET 中的部分体积效应
  • 批准号:
    9974892
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
  • 批准号:
    10041119
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 48.06万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 48.06万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了