Accelerating Biomolecular Simulations on Reconfigurable Computing Hardware
加速可重构计算硬件上的生物分子模拟
基本信息
- 批准号:7532368
- 负责人:
- 金额:$ 23.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsAreaBindingBiochemicalBiochemical ReactionBiologicalBiologyCatalysisCell physiologyCodeCommunitiesCompatibleComplexComputer HardwareComputer softwareComputersComputing MethodologiesDNADataDevelopmentDevicesDockingEnzymesExcisionFutureGoalsHealthHeatingHourInvestigationLawsLigandsMainstreamingMedicalMembraneMemoryMicroprocessorModificationMovementNumbersPerformancePharmaceutical PreparationsProcessProductionProtein EngineeringProteinsPublic HealthPurposeRangeResearchResearch PersonnelSolutionsSpeedStructureSystemTechnologyTimeTransistorsVendorWorkcomputing resourcescostdata structuredesigndrug discoveryengineering designexperienceinterestmolecular dynamicsmolecular recognitionmulti-scale modelingnext generationprotein foldingsimulationsmall moleculesupercomputer
项目摘要
DESCRIPTION (provided by applicant): Accelerating biomolecular simulations will have a direct impact on investigations in many areas of health related research. Simulations of biomolecules are widely used for fundamental understanding of their structure, folding, dynamics and function. The underlying calculations in these simulations are computationally intensive and have benefited considerably from more than an order of magnitude increase in computer processor speeds in last decade alone. There is widespread interest in alternate hardware and software solutions that can speed-up these simulations, as physical challenges in the computing technology are currently placing the limits on future speed increase of processors. Here we propose the development of biomolecular simulations software for adaptive computing that includes Reconfigurable Computing (RC) hardware and General Purpose Graphical Processing Units (GPGPUs) devices. The RC hardware, including Field Programmable Gate Arrays (FPGAs), and GPGPUs provide a tremendous amount of raw computing power even at the desktop level at a fraction of power requirements and cost of multi-processors parallel systems. PMEMD and LAMMPS, widely used biomolecular simulation engines, will be ported and optimized for popular RC/GPGPU devices. Moreover a molecular dynamics (MD) kernel specially designed to efficiently exploit the computational power of current and future RC/GPGPU devices will be developed. The proposed work will benefit the wide community of biochemists, biophysicists and computational chemists. The availability of these codes optimized on adaptive computing hardware will allow the non-expert user to benefit without worrying about the porting and optimizing details. Moreover, the availability of performance profiling utilities and the optimized MD kernel will enable other groups of application code developers to extend our implementation to exploit future FPGA and GPGPU devices enabled platforms. PUBLIC HEALTH RELEVANCE: The development of proposed optimized biomolecular simulations software will have direct impact on health and medical related research in many different areas including biochemical/biophysical characterization of cellular processes, drug-discovery and protein engineering. Biomolecular simulation software is used to investigate biological complexes and activities including protein folding, enzyme catalysis, conformational changes associated with bimolecular function, molecular recognition of proteins, DNA, and biological membrane complexes as well as docking/binding of small compounds to biomolecules.
描述(由申请人提供):加速生物分子模拟将直接影响与健康相关研究的许多领域的调查。生物分子的模拟广泛用于对其结构,折叠,动力学和功能的基本理解。这些模拟中的基本计算在计算上是密集的,仅在过去十年中,计算机处理器速度的数量级就大大受益。人们对可以加快这些模拟的替代硬件和软件解决方案引起了人们的兴趣,因为计算技术中的物理挑战目前正在对处理器的未来速度提高限制。在这里,我们建议开发用于自适应计算的生物分子仿真软件,其中包括可重构计算(RC)硬件和通用图形处理单元(GPGPUS)设备。 RC硬件,包括现场可编程栅极阵列(FPGA)和GPGPU,即使在台式机级别的功率要求和多处理器平行系统的成本方面,即使在台式机级别上也提供了大量的原始计算功率。 PMEMD和LAMMPS(广泛使用的生物分子模拟引擎)将用于流行的RC/GPGPU设备。此外,将开发出专门设计的分子动力学(MD)内核,以有效利用当前和未来RC/GPGPU设备的计算能力。拟议的工作将使广泛的生物化学家,生物物理学家和计算化学家受益。这些代码在自适应计算硬件上优化的代码的可用性将使非专家用户在不担心移植和优化详细信息的情况下受益。此外,性能分析实用程序的可用性以及优化的MD内核将使其他应用程序代码开发人员扩展我们的实现,以利用未来的FPGA和GPGPU设备启用了启用平台。公共卫生相关性:拟议优化的生物分子仿真软件的开发将直接影响许多不同领域的健康和医学相关研究,包括对细胞过程的生化/生物物理表征,药物分离和蛋白质工程。生物分子仿真软件用于研究生物复合物和活性,包括蛋白质折叠,酶催化,与双分子功能相关的构象变化,蛋白质的分子识别,DNA和生物膜复合物以及对生物分子与生物分子的小小的结合/结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratul K Agarwal其他文献
Pratul K Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pratul K Agarwal', 18)}}的其他基金
Biophysical Model of Enzyme Catalysis: Conformational sub-states, solvent coupling and energy networks
酶催化的生物物理模型:构象亚态、溶剂耦合和能量网络
- 批准号:
10735359 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Conformational sub-states in enzyme catalysis: Applications to ribonuclease
酶催化中的构象亚状态:在核糖核酸酶中的应用
- 批准号:
8829307 - 财政年份:2014
- 资助金额:
$ 23.07万 - 项目类别:
Conformational sub-states in enzyme catalysis: Applications to ribonuclease
酶催化中的构象亚状态:在核糖核酸酶中的应用
- 批准号:
9040996 - 财政年份:2014
- 资助金额:
$ 23.07万 - 项目类别:
Accelerating Biomolecular Simulations on Reconfigurable Computing Hardware
加速可重构计算硬件上的生物分子模拟
- 批准号:
7674796 - 财政年份:2008
- 资助金额:
$ 23.07万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Molecular predictors of cardiovascular events and resilience in chronic coronary artery disease
心血管事件的分子预测因素和慢性冠状动脉疾病的恢复力
- 批准号:
10736587 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别: