2-Dimensional Magnetoresistance Imager

二维磁阻成像仪

基本信息

  • 批准号:
    EP/F04027X/1
  • 负责人:
  • 金额:
    $ 9.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The discovery of Giant Magnetoresistance (GMR) in magnetic multilayers in 1988, which increased typical values of magnetoresistance (MR) from 1-2% to 10-100%, stimulated extensive research leading to the field of spintronics. Such was the demand for highly sensitive MR sensors, that within 15 years, GMR sensors had been introduced into the read head of magnetic hard disks. Their performance has been so successful that the technology is now being transferred to other sectors such as motion, position, rotation and field sensing; for example in automotive and biological systems. The nanoscale nature of these sensors makes them highly compatible with nanotechnology. Although the ability to manufacture such complex sensors has been proven by the magnetic recording industry, these materials operate on the nanoscale, and layer thicknesses are typically a nanometre. Quality control is crucial. Ideally, the functional property of the device should be tested, in this case, its MR. Electrical measurements of MR require an electric current to be passed through the sample via contacts, resulting in surface damage and contamination. More importantly, electrical measurements offer no spatial resolution, providing no information about variations across the wafer. Furthermore, it is impractical to test the performance of the wafer following lithographic patterning and so sensor characteristics cannot be determined until after subsequent costly intricate stages. There is therefore a clear requirement for a contactless, non-destructive method for characterising MR. Using electromagnetic radiation in the infrared provides all these advantages. We have pioneered the use of reflection and transmission of infrared as a probe of MR. Based on this experience, we recently proposed an alternative using thermal emissivity. This presents a larger and more direct relationship with MR than reflection, and additionally lends itself readily to spatial resolution on the scale of tens of microns. The technique relies on the connection between electrical resistance and emissivity, the efficiency with which a material emits radiation according to its temperature. Emissivity depends on the surface properties of a material and at long infrared wavelengths (> 5 microns) is directly proportional to the square root of resistance. We detect the change in the intensity of the emitted radiation due to a change in resistance. The radiation is measured using an infrared detector and converted into an apparent temperature. When a magnetic field is applied to a GMR thin film, its resistance and consequently its emissivity reduces. The lower emissivity results in less radiation being emitted and this is interpreted by the detector as a reduction in temperature. The GMR therefore manifests itself as an apparent change in temperature in an applied magnetic field. The power of this technique is realised when the detector is replaced by a CCD camera generating a 2D image of the apparent temperature. By subtracting temperature images in different magnetic fields, an image is produced of the change in temperature resulting from the change in resistance, uniquely providing a spatially resolved image of the magnetoresistance.We propose the development of an instrument capable of 2D imaging of MR designed to carry out the quality control of GMR wafers. Successful development will lead the way for insitu measurement of wafers whilst still inside a growth chamber, the evaluation of material at different stages of the lithographic patterning process and open up new applications such as the deliberate introduction of spatial variations in MR for use in of pattern recognition.
1988年在磁性多层膜中发现了巨磁电阻(GMR),将磁阻(MR)的典型值从1-2%提高到了10%-100%,刺激了自旋电子学领域的广泛研究。对高灵敏度MR传感器的需求如此之大,以至于在15年内,GMR传感器被引入到磁盘的读取头中。他们的表现如此成功,以至于这项技术现在正在转移到其他部门,如运动、位置、旋转和场传感;例如在汽车和生物系统中。这些传感器的纳米级特性使它们与纳米技术高度兼容。尽管制造这种复杂传感器的能力已经被磁记录行业证明,但这些材料在纳米级运行,层厚度通常为纳米级。质量控制至关重要。理想情况下,应该测试设备的功能属性,在这种情况下,其MR的电气测量要求电流通过触点通过样品,从而导致表面损坏和污染。更重要的是,电学测量不提供空间分辨率,也不提供晶片变化的信息。此外,在光刻图案化之后测试晶片的性能是不切实际的,因此直到随后昂贵的复杂阶段之后才能确定传感器特性。因此,显然需要一种非接触式、非破坏性的方法来表征MR。使用红外中的电磁辐射提供了所有这些优点。我们已经率先使用红外反射和透射率作为MR的探头,基于这一经验,我们最近提出了一种使用热发射率的替代方案。与反射相比,这与MR有更大、更直接的关系,而且很容易实现几十微米尺度的空间分辨率。这项技术依赖于电阻和发射率之间的联系,发射率是材料根据其温度发射辐射的效率。发射率取决于材料的表面性质,在长红外波长(>5微米)时,发射率与电阻的平方根成正比。我们探测到由于电阻的变化而产生的辐射强度的变化。使用红外探测器测量辐射,并将其转换为表观温度。当磁场作用于GMR薄膜时,其电阻减小,因此发射率降低。较低的发射率导致发射的辐射较少,这被探测器解释为温度降低。因此,巨磁电阻表现为外加磁场中温度的明显变化。当探测器被产生表观温度的2D图像的CCD摄像机取代时,这种技术的威力就实现了。通过减去不同磁场中的温度图像,可以得到电阻变化引起的温度变化的图像,从而唯一地提供磁阻的空间分辨率图像。我们建议开发一种能够对磁电阻进行2D成像的仪器,旨在执行GMR晶片的质量控制。成功的研发将引领在生长室中对晶片进行原位测量,评估光刻图案化过程中不同阶段的材料,并开辟新的应用领域,例如故意在MR中引入空间变化以用于模式识别。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Thompson其他文献

How a Bayesian Might Estimate the Distribution of Cronbach’s Alpha From Ordinal-Dynamic Scaled Data A Case Study Measuring Nursing Home Resident Quality of Life
贝叶斯如何根据序数动态尺度数据估计克伦巴赫阿尔法的分布 衡量疗养院居民生活质量的案例研究
  • DOI:
    10.1027/1614-2241/a000008
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    B. Gajewski;D. Boyle;Sarah Thompson
  • 通讯作者:
    Sarah Thompson
What prevents interprofessional care?
是什么阻碍了跨专业护理?
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Costello;Sarah Thompson
  • 通讯作者:
    Sarah Thompson
Genomes of the Bacterial Endosymbionts of Carrot Psyllid Trioza apicalis Suggest Complementary Biosynthetic Capabilities
  • DOI:
    10.1007/s00284-025-04119-y
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sarah Thompson;Jinhui Wang;Thomas Schott;Riitta Nissinen;Minna Haapalainen
  • 通讯作者:
    Minna Haapalainen
A study of the Adverse Social Experiences model to the development of eating disorders
不良社会经历模型对饮食失调发展的研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Piran;Sarah Thompson
  • 通讯作者:
    Sarah Thompson
Overcoming shame and aloneness: Emotion-focused group therapy for self-criticism
克服羞耻和孤独:以情绪为中心的自我批评团体治疗

Sarah Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Thompson', 18)}}的其他基金

Open Access Block Award 2024 - University of York
2024 年开放获取区块奖 - 约克大学
  • 批准号:
    EP/Z532241/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - University of York
2023 年开放获取区块奖 - 约克大学
  • 批准号:
    EP/Y529990/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - University of York
2022 年开放获取区块奖 - 约克大学
  • 批准号:
    EP/X527063/1
  • 财政年份:
    2022
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Research Grant
Institutional Sponsorship for York
约克的机构赞助
  • 批准号:
    ST/W508007/1
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Research Grant

相似海外基金

A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
New horizon in tunnel magnetoresistance: Orbital symmetry effect and new quantum devices
隧道磁阻的新视野:轨道对称效应和新型量子器件
  • 批准号:
    22H04966
  • 财政年份:
    2022
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Development of evaluation method for thin film magnetism by spin Hall magnetoresistance
自旋霍尔磁阻薄膜磁性评价方法的开发
  • 批准号:
    21K20497
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
time-resolved magnetoresistance using microwave complex conductivity measurement
使用微波复合电导率测量的时间分辨磁阻
  • 批准号:
    21K14693
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of quasi-2D Si devices with large magnetoresistance
大磁阻准二维硅器件的研制
  • 批准号:
    21K04822
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation of giant tunnel magnetoresistance change by ballistic spin transport control
通过弹道自旋输运控制观察巨隧道磁阻​​变化
  • 批准号:
    21H01750
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of molecular transistors with organic-radical tunnel junctions towards observation of large magnetoresistance
开发具有有机自由基隧道结的分子晶体管以观察大磁阻
  • 批准号:
    20K21010
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
First-Principles Studies of Spin-Orbit Torque and Magnetoresistance in Magnetic Nanostructures
磁性纳米结构中自旋轨道扭矩和磁阻的第一性原理研究
  • 批准号:
    1916275
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
Investigation of Ultra-High Field Properties in Itinerant Electron Systems by using High-Speed Magnetoresistance Measurement
使用高速磁阻测量研究巡回电子系统的超高场特性
  • 批准号:
    20K20892
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
EAGER: Universal transport and diamagnetic signatures in non-magnetic topological semimetals with linear magnetoresistance
EAGER:具有线性磁阻的非磁性拓扑半金属中的通用输运和抗磁性特征
  • 批准号:
    2001376
  • 财政年份:
    2019
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了