Molecular Spintronics
分子自旋电子学
基本信息
- 批准号:EP/F041349/1
- 负责人:
- 金额:$ 131.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decade there has been tremendous growth in the fields of spintronics and organic electronics. Individually, these fields promise to deal with two aspects of the challenges now facing modern inorganic semiconductor electronics: the first being the need - driven by ever increasing power densities and the quest for quantum computers - to exploit degrees of freedom other than the electron charge; the second being the desire for very cheap, universally printable circuits. Although the term 'spintronics' is relatively new, and refers to the manipulation and measurement of the spin rather than just the charge of the electron, information technology has long depended on the electron spin for data storage. Arguably the first advanced spintronic devices are the magnetoresistive (where an external magnetic field modulates the electrical resistance of a material) read heads which have revolutionised hard-drive data storage. The next major use of spintronics will almost certainly be in magnetic random access memory (MRAM), which will combine many of the advantages (notably access speed) of DRAM with the non-volatility of hard drives.Thanks to their low cost, ease of processing, chemical versatility and compatibility with flexible substrates, molecular semiconductors such as phthalocyanines, porphyrins and perylenes, whose key features are rings of carbon atoms, are establishing themselves as attractive alternatives to inorganic semiconductors, such as silicon, for a variety of optoelectronic devices, e.g. organic light emitting diodes (OLEDs) and photovoltaics (OPV). These materials are extremely versatile, with a long history in biomedicine; indeed chlorophyll (which converts light into energy in plants) is a porphyrin derivative and phthalocyanine derivatives are used in cancer therapy. They also have properties that make them desirable for spintronics. Their long spin relaxation times are already being exploited, for example, in spin valve devices where amorphous organic films are used as spacers. Furthermore, they are endowed with high molecular purity compared to inorganic crystal lattices, and display tremendous flexibility for insertion of magnetic entities into molecular frameworks which can be tailored at will, contrary to what can be attained in gallium arsenide (GaAs), the most widely used inorganic semiconductor material for spintronics. Other major advantages of organic molecules are highly tuneable optical properties and large magneto-optic effects in the visible region of the spectrum, which are compatible with discrete local switching.Our research will develop the new field of molecular spintronics, with the specific aim of creating a platform technology for magneto-optics, electronics, and molecular recognition. The platform will be developed for areas where organics have unique advantages. We look forward to particularly dramatic impacts on biology where functionalization is more straightforward than for inorganics, and for quantum information technology where the separation into magnetic ion and ligand subsystems provides independent addressability of qubits (the magnetic ions which can be positioned at will in the carbon ring centers) and control bits (the overlapping ligand - carbon ring - orbitals) which cannot be readily achieved in inorganic solids. To carry out the programme, we have assembled an interdisciplinary team from London and Warwick which has already combined informally to perform groundbreaking proof of concept work, including the fabrication of phthalocyanine nanowires and observation of highly informative magnetic resonance in molecular thin films, for the current proposal. The project has a very specific set of objectives, ranging from optically controlled magnetic interactions to a novel bioassay chip relying on magnetic resonance. To facilitate management, there will be work-packages for film deposition and characterization, devices, biology and theory.
在过去的十年里,自旋电子学和有机电子学领域取得了巨大的发展。单独来看,这些领域有望解决现代无机半导体电子学目前面临的两个方面的挑战:第一个是需求-由不断增加的功率密度和对量子计算机的追求驱动-利用电子电荷以外的自由度;第二个是对非常便宜的通用可印刷电路的需求。虽然“自旋电子学”这个术语相对较新,并且指的是对自旋的操纵和测量,而不仅仅是电子的电荷,但信息技术长期以来一直依赖于电子自旋来进行数据存储。可以说,第一个先进的自旋电子器件是磁阻(外部磁场调制材料的电阻)读取头,它彻底改变了硬盘数据存储。自旋电子学的下一个主要用途几乎肯定是磁性随机存取存储器(MRAM),它将联合收割机的许多优点结合在一起(特别是访问速度)与硬盘的非易失性。由于其低成本、易于加工、化学多功能性以及与柔性基底的兼容性,酞菁、卟啉和二萘嵌苯等分子半导体的关键特征是碳原子环,正确立其本身作为无机半导体(例如硅)的有吸引力的替代物,用于各种光电器件,例如有机发光二极管(OLED)和光致发光器件(OPV)。这些材料用途非常广泛,在生物医学中有着悠久的历史;事实上,叶绿素(在植物中将光转化为能量)是卟啉衍生物,酞菁衍生物用于癌症治疗。它们还具有自旋电子学所需的特性。它们的长自旋弛豫时间已经被利用,例如,在自旋阀器件中,无定形有机膜被用作间隔物。此外,与无机晶格相比,它们具有高分子纯度,并且显示出将磁性实体插入分子框架的巨大灵活性,这些分子框架可以随意定制,这与砷化镓(GaAs)中可以获得的相反,砷化镓是自旋电子学中最广泛使用的无机半导体材料。有机分子的其他主要优点是在可见光谱区具有高度可调的光学性质和大的磁光效应,这与分立的局域开关相兼容。我们的研究将发展分子自旋电子学的新领域,具体目标是为磁光,电子学和分子识别创建平台技术。该平台将为有机物具有独特优势的领域开发。我们期待着对生物学产生特别巨大的影响,因为功能化比无机物更直接,以及对于量子信息技术,其中分离成磁性离子和配体子系统提供了量子位的独立寻址能力(磁性离子可随意定位在碳环中心)和控制位(重叠的配体-碳环-轨道),这在无机固体中不容易实现。为了实施该计划,我们已经组建了一个来自伦敦和沃里克的跨学科团队,该团队已经非正式地结合起来,为当前的提案进行突破性的概念验证工作,包括酞菁纳米线的制造和分子薄膜中高度信息化的磁共振的观察。该项目有一套非常具体的目标,从光学控制的磁相互作用到依赖于磁共振的新型生物测定芯片。为了便于管理,将有薄膜沉积和表征,设备,生物学和理论的工作包。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic properties of copper hexadecaphthalocyanine (F16CuPc) thin films and powders
- DOI:10.1063/1.4773456
- 发表时间:2013-01
- 期刊:
- 影响因子:3.2
- 作者:Wei Wu;L. Rochford;S. Felton;Zhenli Wu;J. Yang;S. Heutz;G. Aeppli;T. Jones;N. Harrison;A. Fisher
- 通讯作者:Wei Wu;L. Rochford;S. Felton;Zhenli Wu;J. Yang;S. Heutz;G. Aeppli;T. Jones;N. Harrison;A. Fisher
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.
- DOI:10.1063/1.4881897
- 发表时间:2014-06
- 期刊:
- 影响因子:0
- 作者:Wei Wu
- 通讯作者:Wei Wu
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine
铜酞菁中三重态激子与局域自旋之间的交换相互作用
- DOI:10.48550/arxiv.1406.2998
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Wu W
- 通讯作者:Wu W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Aeppli其他文献
Making sense of magnetic fields
理解磁场
- DOI:
10.1038/417392a - 发表时间:
2002-05-23 - 期刊:
- 影响因子:48.500
- 作者:
Yeong-Ah Soh;Gabriel Aeppli - 通讯作者:
Gabriel Aeppli
Gabriel Aeppli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Aeppli', 18)}}的其他基金
相似海外基金
Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
- 批准号:
2317464 - 财政年份:2023
- 资助金额:
$ 131.49万 - 项目类别:
Standard Grant
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2022
- 资助金额:
$ 131.49万 - 项目类别:
Discovery Grants Program - Individual
Towards a Merger of Nonadiabatic Molecular Dynamics and Spintronics
非绝热分子动力学与自旋电子学的合并
- 批准号:
2102402 - 财政年份:2021
- 资助金额:
$ 131.49万 - 项目类别:
Standard Grant
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2021
- 资助金额:
$ 131.49万 - 项目类别:
Discovery Grants Program - Individual
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2020
- 资助金额:
$ 131.49万 - 项目类别:
Discovery Grants Program - Individual
Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
- 批准号:
2003057 - 财政年份:2020
- 资助金额:
$ 131.49万 - 项目类别:
Continuing Grant
Molecular Spintronics: Building the better Molecular Multiferroic from the Interface Outwards
分子自旋电子学:从界面向外构建更好的分子多铁性
- 批准号:
1856614 - 财政年份:2019
- 资助金额:
$ 131.49万 - 项目类别:
Standard Grant
Heteronuclear Metalloporphyrin Dimers for Molecular Spintronics
用于分子自旋电子学的异核金属卟啉二聚体
- 批准号:
2329443 - 财政年份:2019
- 资助金额:
$ 131.49万 - 项目类别:
Studentship
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2019
- 资助金额:
$ 131.49万 - 项目类别:
Discovery Grants Program - Individual
Development of molecular spintronics materials based on organic magnetic conducting devices
基于有机磁导器件的分子自旋电子材料的开发
- 批准号:
18H01950 - 财政年份:2018
- 资助金额:
$ 131.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




