A Multidisciplinary Approach to Protein Nanoarrays

蛋白质纳米阵列的多学科方法

基本信息

  • 批准号:
    EP/F042590/1
  • 负责人:
  • 金额:
    $ 47.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Proteins are the molecular machinery of all living organisms and perform all the functions necessary for life. In every organism, large numbers of proteins act in a highly orchestrated manner to perform tasks from the processing of nutrients to the reproduction of the organism. The function of proteins therefore has a major bearing on health as many diseases are caused by the altered activity, deficiency or overproduction of various proteins. The activity of proteins also underlies any human economic activity which is reliant on living systems such as industries which utilise fermentation and the agricultural sector. Thus, in order to fully understand living systems, there is a need for the identification of proteins, measurement of the amounts present, discovery of their function and elucidation of the mechanisms by which they interact with each other. These are encompassed in the scientific field known as proteomics . One method of enabling the study of proteins is to anchor them to a two-dimensional surface, such as a glass slide or chip , where each protein is placed at a defined location on the surface. This offers a convenient means of handling large numbers of proteins and a means to test them simultaneously. In this way, an entire chip and it's collection of proteins can be subjected to various tests and if a biological activity of interest is detected at a particular location on that slide, the protein which caused that activity can be identified. Current technology allows the production of arrays of approximately 10,000 protein spots on a single chip with spot sizes of about a hundredth of a millimetre.However, the number of proteins in nature that could be examined is vast. In humans alone, the Human Genome Project has identified approximately 50,000 proteins. Moreover, the types and activity of various proteins are variable between different cells and at different times in a cell's life cycle. Many interesting proteins are also present in very small amounts. To be able to examine such a large number of proteins from such widely varied sources, production methods are needed which further increase the number of proteins that can be placed on a chip for analysis. Chips with smaller protein spots would also mean that only tiny amounts of proteins which may be rare are needed for testing. Further miniaturisation these spots could be achieved by harnessing the techniques developed in nanotechnology, the science of constructing objects at nanometre scales (a billionth of a metre) and in principle, down to even a single molecule. Accordingly, this proposal aims to use two nanotechnological techniques to construct these protein arrays on siloxane surfaces, a glass-like material. These techniques are dip-pen nanolithography, where a very fine (nanometre wide) tip is dipped in a chemical ink and used to write patterns on surfaces, and scanning near-field photolithography which uses a very fine hole to direct laser light to write patterns on the surface. However, this proposal also includes a number of other scientific areas which will be needed to build a protein nanoarray . Molecular biology techniques will be employed to produce proteins which can be specifically attached to areas on the surface that have been patterned such that the way in which the protein is attached is well defined. To bring the surface nanotechnology and biology together, synthetic chemistry will be employed to prepare novel inks which are compatible with biological systems, suitable for writing and can react under laser light to produce spots (or other patterns) which can subsequently attach proteins in a specific manner. While there have already been examples where nanotechnology has been used to make arrays of this scale with one or two proteins, the key breakthrough that is being proposed here is an array of multiple proteins which would be directly relevant in proteomics.
蛋白质是所有生物体的分子机器,执行生命所需的所有功能。在每个生物体中,大量蛋白质以高度协调的方式发挥作用,执行从营养物质加工到生物体繁殖的任务。因此,蛋白质的功能对健康具有重大影响,因为许多疾病是由各种蛋白质的活性改变、缺乏或过量引起的。蛋白质的活性也是任何依赖生命系统的人类经济活动的基础,例如利用发酵的工业和农业部门。因此,为了充分了解生命系统,需要鉴定蛋白质、测量其存在量、发现它们的功能并阐明它们相互作用的机制。这些都包含在称为蛋白质组学的科学领域中。实现蛋白质研究的一种方法是将它们锚定到二维表面,例如载玻片或芯片,其中每个蛋白质被放置在表面上的指定位置。这提供了处理大量蛋白质的便捷方法以及同时测试它们的方法。通过这种方式,整个芯片及其蛋白质集合可以接受各种测试,如果在载玻片上的特定位置检测到感兴趣的生物活性,则可以鉴定引起该活性的蛋白质。目前的技术允许在单个芯片上生产大约 10,000 个蛋白质点的阵列,点尺寸约为百分之一毫米。然而,自然界中可以检查的蛋白质数量是巨大的。仅在人类中,人类基因组计划就已鉴定出大约 50,000 种蛋白质。此外,各种蛋白质的类型和活性在不同细胞之间以及在细胞生命周期的不同时期是可变的。许多有趣的蛋白质也以非常少量的形式存在。为了能够检查来自如此广泛的来源的如此大量的蛋白质,需要进一步增加可以放置在芯片上进行分析的蛋白质数量的生产方法。具有较小蛋白质斑点的芯片还意味着只需要少量可能很少见的蛋白质来进行测试。通过利用纳米技术开发的技术,可以实现这些点的进一步小型化,纳米技术是在纳米尺度(十亿分之一米)构建物体的科学,原则上甚至可以缩小到单个分子。因此,该提案旨在使用两种纳米技术在硅氧烷表面(一种玻璃状材料)上构建这些蛋白质阵列。这些技术包括浸笔纳米光刻技术和扫描近场光刻技术,其中将非常细的(纳米宽)尖端浸入化学墨水中并用于在表面上写入图案,扫描近场光刻技术使用非常细的孔引导激光在表面上写入图案。然而,该提案还包括构建蛋白质纳米阵列所需的许多其他科学领域。将采用分子生物学技术来生产可以特异性附着在已图案化的表面区域上的蛋白质,从而明确蛋白质的附着方式。为了将表面纳米技术和生物学结合起来,将采用合成化学来制备新型墨水,这些墨水与生物系统兼容,适合书写,并且可以在激光下反应产生斑点(或其他图案),随后可以以特定方式附着蛋白质。虽然已经有纳米技术被用来用一种或两种蛋白质制造这种规模的阵列的例子,但这里提出的关键突破是多种蛋白质的阵列,这将与蛋白质组学直接相关。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity.
一种制备具有高酶活性的纳米结构生物分子界面的方法。
  • DOI:
    10.1039/c1nr11443c
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Wong LS
  • 通讯作者:
    Wong LS
Site-selective covalent protein immobilisation on nanofabricated surfaces mediated by a phosphopantetheinyl transferase towards nanomedical arrays and biosensors
由磷酸泛酰基转移酶介导的纳米加工表面上的位点选择性共价蛋白质固定化用于纳米医学阵列和生物传感器
Direct-write scanning probe lithography: towards a desktop fab
直写扫描探针光刻:迈向桌面晶圆厂
  • DOI:
    10.1117/12.884665
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giam L
  • 通讯作者:
    Giam L
The Snomipede: A parallel platform for scanning near-field photolithography
  • DOI:
    10.1557/jmr.2011.370
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    E. ul-Haq;Zhuming Liu;Y. Zhang;S. A. Alang Ahmad;L. Wong;J. Hobbs;G. Leggett;Jason Micklefield;C. Roberts;J. Weaver
  • 通讯作者:
    E. ul-Haq;Zhuming Liu;Y. Zhang;S. A. Alang Ahmad;L. Wong;J. Hobbs;G. Leggett;Jason Micklefield;C. Roberts;J. Weaver
Nanoscale biomolecular structures on self-assembled monolayers generated from modular pegylated disulfides.
由模块化聚乙二醇化二硫化物生成的自组装单分子层上的纳米级生物分子结构。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Shin Wong其他文献

Fibre optic pH sensors employing tethered non-fluorescent indicators on macroporous glass
  • DOI:
    10.1016/j.snb.2004.11.040
  • 发表时间:
    2005-06-29
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Shin Wong;William S. Brocklesby;Mark Bradley
  • 通讯作者:
    Mark Bradley
Development of Improved Spectrophotometric Assays for Biocatalytic Silyl Ether Hydrolysis
生物催化硅醚水解改进分光光度测定法的开发
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Yuqing Lu;Chisom S. Egedeuzu;Peter G. Taylor;Lu Shin Wong
  • 通讯作者:
    Lu Shin Wong

Lu Shin Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Shin Wong', 18)}}的其他基金

21EngBio: Engineering Biology for Molecular Precursor Production
21EngBio:分子前体生产的工程生物学
  • 批准号:
    BB/W013037/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
Biocatalytic Approaches to the Synthetic Manipulation of Silicones
有机硅合成操作的生物催化方法
  • 批准号:
    EP/S013539/1
  • 财政年份:
    2019
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
Collaboration Building: Towards the Next Generation of Scanning Probe Block Copolymer Nanolithography
合作建设:迈向下一代扫描探针块共聚物纳米光刻
  • 批准号:
    EP/L005417/1
  • 财政年份:
    2014
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
Biocatalytic Nanolithography: Nanofabrication of High Chemical Complexity Surfaces
生物催化纳米光刻:高化学复杂性表面的纳米制造
  • 批准号:
    EP/K011685/1
  • 财政年份:
    2013
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
Large Area Scanning-Probe Nanofabrication Platform
大面积扫描探针纳米加工平台
  • 批准号:
    EP/K024485/1
  • 财政年份:
    2013
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

High moisture extrusion technology assisted by enzymatic protein-protein crosslinking approach to improve the texture of plant-based meat analalogues
高水分挤出技术辅助酶促蛋白质-蛋白质交联方法改善植物基肉类类似物的质地
  • 批准号:
    2886464
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Studentship
A small molecule approach to spatial and temporal control of covalent protein inhibition in cells
细胞内共价蛋白抑制的空间和时间控制的小分子方法
  • 批准号:
    2883086
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Studentship
PROTACs as a novel Approach to target Protein Tyrosine Kinases for degradation in human Platelets
PROTAC 作为一种靶向蛋白酪氨酸激酶降解人血小板的新方法
  • 批准号:
    BB/X017176/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
A novel proteomics approach to identify alcohol-induced changes in synapse-specific presynaptic protein interactions.
一种新的蛋白质组学方法,用于识别酒精引起的突触特异性突触前蛋白质相互作用的变化。
  • 批准号:
    10651991
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
Statistical Mechanical Informatics Approach to Protein Design Problem
蛋白质设计问题的统计机械信息学方法
  • 批准号:
    23K19996
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Transitions: Adopting a Protein Biochemistry Approach to Mechanistic Understanding of RNA Buffering
转变:采用蛋白质生物化学方法来理解 RNA 缓冲的机制
  • 批准号:
    2327867
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Protein Manipulation and Engineering with an Electronic Biochemical Approach
用电子生化方法进行蛋白质操作和工程
  • 批准号:
    2317111
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Development of novel therapeutic approach for refractory anemia and malignant lymphoma by targeting ferroptosis suppressor protein-1
以铁死亡抑制蛋白-1为靶点开发难治性贫血和恶性淋巴瘤的新治疗方法
  • 批准号:
    22KK0270
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
A novel approach to scaling up production of Brazzein - a natural, non-caloric protein sweetener and sugar alternative that can address UK and global sugar-related obesity epidemics and health challenges
一种扩大 Brazzein 生产的新方法 - 一种天然、无热量的蛋白质甜味剂和糖替代品,可以解决英国和全球与糖相关的肥胖流行病和健康挑战
  • 批准号:
    10075378
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Collaborative R&D
Chemical Proteomics Approach to Discover Novel Small Molecule E3 Ligase recruiters for Targeted Protein degradation (TPD)
化学蛋白质组学方法发现用于靶向蛋白质降解 (TPD) 的新型小分子 E3 连接酶招募剂
  • 批准号:
    10711249
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了