Biocatalytic Approaches to the Synthetic Manipulation of Silicones
有机硅合成操作的生物催化方法
基本信息
- 批准号:EP/S013539/1
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living organisms construct a tremendous variety of structures across a wide range of sizes, from bones to cells. Yet, the assembly of such structures ultimately rely on the organisation and production of building blocks that are essentially on the molecular to nanoscopic scale (Angstroms to nanometres). These structures, which are composed from a variety of compounds (proteins, fats, DNA) are synthesised by enzymes. These enzymes, which are the molecular machinery of all living organisms, are particularly interesting since they are able to perform a variety of reactions with high efficiency, giving mainly the desired compound with few unwanted by-products. Furthermore, they function under ambient conditions and do not rely on rare or toxic materials. As a result, many types of enzymes are now utilised in the production of medicines and other high-value chemicals.One area in which enzymes have not been widely studied so far is in the chemistry of organic compounds containing silicon. Such "organosilicon" compounds are mainly used in the form of "silicone", a plastic-like material. These silicones are extremely widely used in all sectors of human activity, from industrial machine parts, lubricants and sealants; to consumer goods such as homeware, cosmetics and paints; as well as in electronic and surgical devices. Indeed, these materials are economically very important, with the global production and use of silicones giving rise to a multi-£billion turnover annually.Unfortunately, current methods of producing silicones rely on chlorine-containing raw materials that are ecologically unfriendly and energy demanding to produce. In contrast, some species of marine sponges use silicon (in the form of glass-like silica) as part of their skeleton. To form this skeleton, the sponges employ a family of enzymes called "silicateins", which are able to react with silica. Recent research by the lead investigator has shown that, remarkably, these enzymes are able to catalyse the formation, as well as degradation, of a range of organosilicon compounds under relatively mild conditions (less than 100 degrees C, using non-toxic starting materials). Thus, these enzymes could potentially offer a sustainable means of producing silicone compounds that would find use in many areas of the chemical industry. Furthermore, the silicateins could also be applied to decompose unwanted silicone waste into compounds that could be recycled, which cannot currently be achieved using conventional chemical methods.Accordingly, the goals of this research are to investigate the feasibility of using silicateins for the efficient and precise synthesis of silicone materials, and develop modified versions of the enzymes that will be able to perform the production of silicones with a variety of chemical structures. The types of silicones that will be targeted include both silicones that are applicable to industrial applications, but also novel types that are otherwise difficult to synthesise by other means. In parallel, the feasibility of using them in the reprocessing and recycling of silicones will also be researched. In all cases, a major part of this research will be to study the chemical mechanisms by which the silicateins are able to perform these reactions. Such an understanding of how these enzymes function will therefore allow us to make modifications to improve their capabilities.
从骨骼到细胞,生物体在各种大小范围内构建了各种各样的结构。然而,这种结构的组装最终依赖于基本上在分子到纳米尺度(从微米到纳米)上的构建块的组织和生产。这些结构由各种化合物(蛋白质,脂肪,DNA)组成,由酶合成。这些酶是所有生物体的分子机器,它们特别令人感兴趣,因为它们能够高效地进行各种反应,主要产生所需的化合物,很少有不需要的副产物。此外,它们在环境条件下运行,不依赖稀有或有毒材料。因此,许多类型的酶现在被用于药物和其他高价值化学品的生产。迄今为止,酶尚未被广泛研究的一个领域是含硅有机化合物的化学。这种“有机硅”化合物主要以“硅树脂”的形式使用,这是一种类似塑料的材料。这些有机硅广泛应用于人类活动的各个领域,从工业机器零件,润滑剂和密封剂;到家用品,化妆品和油漆等消费品;以及电子和外科器械。事实上,这些材料在经济上非常重要,全球有机硅的生产和使用每年产生数十亿英镑的营业额。不幸的是,目前生产有机硅的方法依赖于含氯原材料,这些原材料对生态不友好,并且生产需要能源。相比之下,一些海绵物种使用硅(以玻璃状二氧化硅的形式)作为其骨骼的一部分。为了形成这种骨架,海绵使用了一种叫做“silicateins”的酶家族,这种酶能够与二氧化硅反应。首席研究员最近的研究表明,值得注意的是,这些酶能够在相对温和的条件下(低于100摄氏度,使用无毒的起始材料)催化一系列有机硅化合物的形成和降解。因此,这些酶可能提供一种可持续的方法来生产有机硅化合物,这些有机硅化合物将在化学工业的许多领域中得到应用。此外,硅酸三烯还可以用于将不需要的有机硅废物分解成可以回收的化合物,这是目前使用常规化学方法无法实现的。因此,本研究的目标是研究使用硅酸三烯高效精确合成有机硅材料的可行性,并开发能够生产具有多种化学结构的有机硅的酶的改良版本。目标有机硅类型包括适用于工业应用的有机硅,以及难以通过其他方式合成的新型有机硅。同时,还将研究将其用于有机硅再加工和回收的可行性。在所有情况下,这项研究的主要部分将是研究硅酸盐能够进行这些反应的化学机制。因此,对这些酶如何发挥作用的理解将使我们能够进行修改以提高其能力。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biocatalytic Silylation: The Condensation of Phenols and Alcohols with Triethylsilanol
- DOI:10.3390/catal11080879
- 发表时间:2021-08-01
- 期刊:
- 影响因子:3.9
- 作者:Sparkes,Emily;Egedeuzu,Chisom S.;Wong,Lu Shin
- 通讯作者:Wong,Lu Shin
On the Biocatalytic Synthesis of Silicone Polymers
有机硅聚合物的生物催化合成
- DOI:10.1039/d4fd00003j
- 发表时间:2024
- 期刊:
- 影响因子:3.4
- 作者:Lu Y
- 通讯作者:Lu Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Shin Wong其他文献
Fibre optic pH sensors employing tethered non-fluorescent indicators on macroporous glass
- DOI:
10.1016/j.snb.2004.11.040 - 发表时间:
2005-06-29 - 期刊:
- 影响因子:
- 作者:
Lu Shin Wong;William S. Brocklesby;Mark Bradley - 通讯作者:
Mark Bradley
Development of Improved Spectrophotometric Assays for Biocatalytic Silyl Ether Hydrolysis
生物催化硅醚水解改进分光光度测定法的开发
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.5
- 作者:
Yuqing Lu;Chisom S. Egedeuzu;Peter G. Taylor;Lu Shin Wong - 通讯作者:
Lu Shin Wong
Lu Shin Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Shin Wong', 18)}}的其他基金
21EngBio: Engineering Biology for Molecular Precursor Production
21EngBio:分子前体生产的工程生物学
- 批准号:
BB/W013037/1 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Research Grant
Collaboration Building: Towards the Next Generation of Scanning Probe Block Copolymer Nanolithography
合作建设:迈向下一代扫描探针块共聚物纳米光刻
- 批准号:
EP/L005417/1 - 财政年份:2014
- 资助金额:
$ 56.7万 - 项目类别:
Research Grant
Biocatalytic Nanolithography: Nanofabrication of High Chemical Complexity Surfaces
生物催化纳米光刻:高化学复杂性表面的纳米制造
- 批准号:
EP/K011685/1 - 财政年份:2013
- 资助金额:
$ 56.7万 - 项目类别:
Research Grant
Large Area Scanning-Probe Nanofabrication Platform
大面积扫描探针纳米加工平台
- 批准号:
EP/K024485/1 - 财政年份:2013
- 资助金额:
$ 56.7万 - 项目类别:
Research Grant
A Multidisciplinary Approach to Protein Nanoarrays
蛋白质纳米阵列的多学科方法
- 批准号:
EP/F042590/1 - 财政年份:2008
- 资助金额:
$ 56.7万 - 项目类别:
Fellowship
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Synthetic biology approaches to construct metal analogues of vitamin B12 to act as anti-microbial and imaging agents for health applications.
利用合成生物学方法构建维生素 B12 的金属类似物,作为健康应用的抗菌剂和显像剂。
- 批准号:
2881504 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Studentship
Understanding and rewiring cellular behavior with synthetic biology approaches
用合成生物学方法理解和重新连接细胞行为
- 批准号:
10662938 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Targeting Neuromuscular Ageing using Novel Synthetic Retinoids and Chrono-pharmacological Approaches
使用新型合成类维生素A和时间药理学方法对抗神经肌肉衰老
- 批准号:
2888421 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Studentship
Using synthetic virology approaches to elucidate novel virus-host interactions and develop targeted therapeutics
使用合成病毒学方法阐明新型病毒-宿主相互作用并开发靶向治疗方法
- 批准号:
495160 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Dissecting protein kinase A regulation of neurons using synthetic approaches
使用合成方法剖析蛋白激酶 A 对神经元的调节
- 批准号:
BB/X008215/1 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Research Grant
Synthetic Biology Approaches to Selective Amino Acid Modification and Incorporation
选择性氨基酸修饰和掺入的合成生物学方法
- 批准号:
2204014 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
Probabilistic approaches to optimize synthetic organisms
优化合成生物体的概率方法
- 批准号:
RGPIN-2018-05085 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Discovery Grants Program - Individual
Development of novel high-performance fire suppressants via synthetic chemistry and fire-safety engineering approaches
通过合成化学和消防安全工程方法开发新型高性能灭火剂
- 批准号:
22K04614 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic approaches to novel antimicrobial agents.
新型抗菌剂的合成方法。
- 批准号:
574347-2022 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
University Undergraduate Student Research Awards
Metabolic Engineering and Synthetic Biology approaches for sustainable and efficient production of carotenoids in yeast
在酵母中可持续高效生产类胡萝卜素的代谢工程和合成生物学方法
- 批准号:
576220-2022 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Alliance Grants