Biocatalytic Nanolithography: Nanofabrication of High Chemical Complexity Surfaces

生物催化纳米光刻:高化学复杂性表面的纳米制造

基本信息

  • 批准号:
    EP/K011685/1
  • 负责人:
  • 金额:
    $ 13.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Living organisms construct a tremendous variety of structures across a range of sizes, from large bones to microscopic cell components in order to carry out their life processes. Despite this variation in size, the assembly of all of these objects ultimately relies on the generation of molecules that are nanometres in scale (a billionth of a metre, or 1/100,000th of the thickness of a human hair). These biological "building blocks", composed of compounds such as sugars and proteins are produced by enzymes, the molecular machinery of all living organisms. In order to generate these complex larger structures, living organisms have developed a range of methods for moving these enzymes to specific locations where the structures need to be formed.The ability to manipulate and study objects on nanometre scales is called nanotechnology, and is particularly interesting since at this size range, materials display new properties that are radically different from when they exist in their bulk form. By finding ways of harnessing these unusual properties, it is expected that they can be used to create entirely new types of technologies and devices. The basic idea of being able to move enzymes to particular locations as a means of controlling the construction of objects on this scale would therefore be extremely useful if it could be applied by us to assemble highly miniaturised devices, such as electronic components or circuits. Harnessing enzymes for this purpose is particularly appealing since they are able to conduct a wide range of chemical reactions very efficiently and generate few unwanted by-products. Furthermore, they function under mild conditions and do not rely on rare or toxic materials. In contrast, many of the current techniques used in nanotechnology are derived from the electronics industry are not only limited in the types of chemistry they can achieve due to the harshness of the conditions under which they operate, but are also very power consuming.Accordingly, the aim of this research project is to use enzymes that are able to promote the formation and deposition of materials to generate nanometre-scale patterns on a variety of surfaces. To achieve this aim, enzymes will be used together with an instrument called a "scanning probe microscope". This instrument uses miniature electrical motors to move a very sharp tip, the "probe" of the instrument, which is only a few nanometres wide. The instrument is also able to control the movement of this probe with nanometre precision. This ability to move and position the probe with such fine control makes it possible to use it to "write" patterns on surfaces. By attaching these enzymes to the tips of these probes, the chemical reactivity of the enzymes can be directed to deposit their materials as nanoscopic patterns. This new method of writing nanopatterns will be further facilitated by developing modified versions of these enzymes so that they will perform efficiently on a scanning probe. For example, they may be modified to deposit a wider range of compounds, or to be more resistant to damage so they may be used for a longer period of time before needing to be replaced.The materials that are produced will then be tested to determine their electrical properties so that they can then be applied for the construction of miniaturised electronic devices. Furthermore, experiments will be carried out using many scanning probes writing patterns simultaneously, which will demonstrate how this new method of nanofabrication could be used for the mass production of chemically complex miniaturised devices.
生物体在不同的尺寸范围内构建了各种各样的结构,从大型骨骼到微观细胞成分,以执行其生命过程。尽管大小不同,但所有这些物体的组装最终都依赖于纳米级分子的产生(十亿分之一米,或人类头发厚度的十万分之一)。这些生物“积木”由糖和蛋白质等化合物组成,由酶(所有生物体的分子机制)产生。为了制造这些复杂的大结构,生物体已经开发出一系列的方法来将这些酶移动到需要形成结构的特定位置。在纳米尺度上操纵和研究物体的能力被称为纳米技术,特别有趣的是,在这个尺寸范围内,材料显示出与它们以大块形式存在时完全不同的新特性。通过找到利用这些不寻常的特性的方法,预计它们可以用于创建全新类型的技术和设备。因此,能够将酶移动到特定位置作为控制这种规模的物体构造的手段的基本思想将是非常有用的,如果它可以被我们用来组装高度集成的设备,如电子元件或电路。为此目的利用酶是特别有吸引力的,因为它们能够非常有效地进行广泛的化学反应,并且很少产生不需要的副产物。此外,它们在温和的条件下工作,不依赖稀有或有毒材料。相比之下,纳米技术中使用的许多当前技术来源于电子工业,不仅由于其操作条件的苛刻性而限制了它们可以实现的化学类型,而且还非常耗电。该研究项目的目的是使用能够促进材料形成和沉积的酶来产生纳米-各种表面上的鳞片图案。为了实现这一目标,酶将与一种称为“扫描探针显微镜”的仪器一起使用。这种仪器使用微型电动机来移动一个非常尖锐的尖端,即仪器的“探针”,它只有几纳米宽。该仪器还能够以纳米精度控制该探针的移动。这种以如此精细的控制移动和定位探针的能力使得可以使用它在表面上“写入”图案。通过将这些酶附着到这些探针的尖端,酶的化学反应性可以被引导以存款它们的材料作为纳米级图案。通过开发这些酶的修饰版本,这种写入纳米粒子的新方法将进一步促进它们在扫描探针上的有效表现。例如,它们可以被改性以存款更广泛的化合物,或更耐损坏,因此它们可以在需要更换之前使用更长的时间。然后,生产的材料将被测试以确定它们的电气特性,以便它们可以用于构建封装的电子设备。此外,将使用许多扫描探针同时写入图案进行实验,这将展示这种纳米纤维的新方法如何用于化学复杂的嵌入式设备的大规模生产。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-area Scanning Probe Nanolithography Facilitated by Automated Alignment and Its Application to Substrate Fabrication for Cell Culture Studies.
Lithographic Patterning of Nanoscale Arrays of the Oxidase Enzyme CotA: Effects on Activity and Stability
  • DOI:
    10.1002/admt.202200490
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Silvia Fruncillo;Y. Toh;C. Blanford;X. Su;Hong Liu;L. Wong
  • 通讯作者:
    Silvia Fruncillo;Y. Toh;C. Blanford;X. Su;Hong Liu;L. Wong
Polymer Pen Lithography-Fabricated DNA Arrays for Highly Sensitive and Selective Detection of Unamplified Ganoderma Boninense DNA.
聚合物笔光刻法制造的 DNA 阵列,用于对未扩增的灵芝 DNA 进行高灵敏度和选择性检测。
  • DOI:
    10.3390/polym11030561
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Rani E
  • 通讯作者:
    Rani E
Sensitive and Selective Detection of DNA Fragments Associated with Ganoderma Boninense by DNA-Nanoparticle Conjugate Hybridisation
通过 DNA-纳米颗粒缀合物杂交灵敏、选择性检测与灵芝相关的 DNA 片段
  • DOI:
    10.26434/chemrxiv.9248825.v2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rani E
  • 通讯作者:
    Rani E
Sensitive and Selective Detection of DNA Fragments Associated with Ganoderma Boninense Pathogen by DNA-Nanoparticle Conjugate Hybridisation
通过 DNA-纳米颗粒缀合物杂交灵敏、选择性检测与灵芝病原体相关的 DNA 片段
  • DOI:
    10.26434/chemrxiv.9248825.v1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rani E
  • 通讯作者:
    Rani E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Shin Wong其他文献

Fibre optic pH sensors employing tethered non-fluorescent indicators on macroporous glass
  • DOI:
    10.1016/j.snb.2004.11.040
  • 发表时间:
    2005-06-29
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Shin Wong;William S. Brocklesby;Mark Bradley
  • 通讯作者:
    Mark Bradley
Development of Improved Spectrophotometric Assays for Biocatalytic Silyl Ether Hydrolysis
生物催化硅醚水解改进分光光度测定法的开发
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Yuqing Lu;Chisom S. Egedeuzu;Peter G. Taylor;Lu Shin Wong
  • 通讯作者:
    Lu Shin Wong

Lu Shin Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Shin Wong', 18)}}的其他基金

21EngBio: Engineering Biology for Molecular Precursor Production
21EngBio:分子前体生产的工程生物学
  • 批准号:
    BB/W013037/1
  • 财政年份:
    2022
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
Biocatalytic Approaches to the Synthetic Manipulation of Silicones
有机硅合成操作的生物催化方法
  • 批准号:
    EP/S013539/1
  • 财政年份:
    2019
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
Collaboration Building: Towards the Next Generation of Scanning Probe Block Copolymer Nanolithography
合作建设:迈向下一代扫描探针块共聚物纳米光刻
  • 批准号:
    EP/L005417/1
  • 财政年份:
    2014
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
Large Area Scanning-Probe Nanofabrication Platform
大面积扫描探针纳米加工平台
  • 批准号:
    EP/K024485/1
  • 财政年份:
    2013
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
A Multidisciplinary Approach to Protein Nanoarrays
蛋白质纳米阵列的多学科方法
  • 批准号:
    EP/F042590/1
  • 财政年份:
    2008
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Fellowship

相似海外基金

Mechanical nanolithography without solvents - a step towards sustainable nanomanufacturing
无溶剂机械纳米光刻——迈向可持续纳米制造的一步
  • 批准号:
    EP/W034387/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Wrinkle nanolithography for the bottom-up fabrication of DNA nanowire arrays
用于自下而上制造 DNA 纳米线阵列的皱纹纳米光刻
  • 批准号:
    22K18753
  • 财政年份:
    2022
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Rapid Prototyping of Novel Devices with In-situ Deposition, Imaging and Nanolithography
利用原位沉积、成像和纳米光刻技术快速制作新型器件原型
  • 批准号:
    EP/W006243/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Research Grant
X-Ray Nanolithography Facility: Towards the ultimate resolution
X 射线纳米光刻设备:迈向终极分辨率
  • 批准号:
    LE200100174
  • 财政年份:
    2020
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Nanolithography system
纳米光刻系统
  • 批准号:
    441219355
  • 财政年份:
    2020
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Major Research Instrumentation
CAREER: Three-Dimensional Nanolithography with Inexpensive Hardware
职业:使用廉价硬件的三维纳米光刻
  • 批准号:
    2022818
  • 财政年份:
    2020
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
CAREER: Nanolithography Using Ultrashort-Pulsed Laser Processing
职业:使用超短脉冲激光加工的纳米光刻
  • 批准号:
    1846671
  • 财政年份:
    2019
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
MRI: Acquisition of the NanoFrazor - a unique AFM-based nanolithography tool to support multidisciplinary research and promote nanoscience in South Carolina and beyond
MRI:收购 NanoFrazor - 一种独特的基于 AFM 的纳米光刻工具,用于支持多学科研究并促进南卡罗来纳州及其他地区的纳米科学
  • 批准号:
    1920117
  • 财政年份:
    2019
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 3-D Nanolithography System
MRI:获取 3D 纳米光刻系统
  • 批准号:
    1828480
  • 财政年份:
    2018
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了