Randomisation in Online Algorithms, Load Balancing and other Dynamic Problems
在线算法、负载平衡和其他动态问题中的随机化
基本信息
- 批准号:EP/F043333/1
- 负责人:
- 金额:$ 26.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computers are used to solve all kinds of problems emerging in the real world. Some of these problems are static. The computer is given some fixed input like a street map, the current location, and a destination. With these information it is, at least in principle, easy to calculate the fastest route to the destination.However, many problems are not static but dynamic. This is mostly due to the fact that we usually have no or very little information about future events like a sudden traffic jam on our pre-calculated route.A navigation system should be able to react to such unforeseeable events. The computation has to be ongoing and the solution has to be incessantly adjusted to the current situation and although previous decisions may turn out to be suboptimal, they cannot be reverted. Although it is impossible to avoid wrong decisions, the goal is to at least minimise the negative impact they have. The aim of this research is to give strategies to deal with problems that have some kind of dynamic aspect to them and study how randomisation can be used to obtain good solutions. The range of dynamic problems to be studied goes from concrete problems from practise to more abstract problems that emerge as sub-problems in numerous tasks.
计算机被用来解决现实世界中出现的各种问题。其中一些问题是静态的。计算机得到一些固定的输入,如街道地图、当前位置和目的地。有了这些信息,至少在原则上,很容易计算出到达目的地的最快路线。然而,许多问题不是静态的,而是动态的。这主要是因为我们通常没有或很少关于未来事件的信息,比如我们预先计算的路线上的突然交通拥堵。导航系统应该能够对这种不可预见的事件做出反应。计算必须持续进行,解决办法必须根据当前情况不断调整,尽管以前的决定可能被证明是次优的,但它们不能逆转。尽管错误的决定是不可能避免的,但我们的目标是至少将它们造成的负面影响降至最低。这项研究的目的是给出策略来处理具有某种动态方面的问题,并研究如何使用随机化来获得好的解决方案。要研究的动力学问题的范围从具体的实践问题到更抽象的问题,这些问题在许多任务中作为子问题出现。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Economical Caching
- DOI:10.1145/2493246.2493247
- 发表时间:2013-07
- 期刊:
- 影响因子:0
- 作者:Matthias Englert;Heiko Röglin;J. Spönemann;Berthold Vöcking
- 通讯作者:Matthias Englert;Heiko Röglin;J. Spönemann;Berthold Vöcking
An O (log k )-competitive algorithm for generalized caching
用于广义缓存的 O (log k ) 竞争算法
- DOI:10.1137/1.9781611973099.133
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Adamaszek A
- 通讯作者:Adamaszek A
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings
近似、随机化和组合优化。
- DOI:10.1007/978-3-642-15369-3_12
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Englert M
- 通讯作者:Englert M
Almost tight bounds for reordering buffer management
重新排序缓冲区管理的几乎严格限制
- DOI:10.1145/1993636.1993717
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Adamaszek A
- 通讯作者:Adamaszek A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Englert其他文献
Evolutionäre Algorithmen zwischen experimenteller und theoretischer Analyse
进化算法zwischen实验和理论分析
- DOI:
10.17877/de290r-8557 - 发表时间:
2004 - 期刊:
- 影响因子:1.2
- 作者:
Patrick Briest;Dimo Brockhoff;Bastian Degener;Matthias Englert;Christian Gunia;Oliver Heering;M. Leifhelm;Kai Plociennik;H. Röglin;Andrea Schweer;Dirk Sudholt;S. Tannenbaum - 通讯作者:
S. Tannenbaum
Vertex Sparsifiers: New Results from Old Techniques
顶点稀疏器:旧技术的新结果
- DOI:
10.1137/130908440 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Matthias Englert;Anupam Gupta;Robert Krauthgamer;Harald Räcke;Inbal Talgam;Kunal Talwar - 通讯作者:
Kunal Talwar
New Bounds for Online Packing LPs
在线包装有限合伙人的新界限
- DOI:
10.1007/978-3-642-54423-1_28 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Matthias Englert;Nicolaos Matsakis;M. Mucha - 通讯作者:
M. Mucha
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Smoothed Analysis of the 2-Opt Algorithm for the General TSP
通用TSP的2-Opt算法的平滑分析
- DOI:
10.1145/2972953 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthias Englert;Heiko Röglin;Berthold Vöcking - 通讯作者:
Berthold Vöcking
Matthias Englert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
- 批准号:21976048
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
- 批准号:71964023
- 批准年份:2019
- 资助金额:27.5 万元
- 项目类别:地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
- 批准号:91646204
- 批准年份:2016
- 资助金额:201.0 万元
- 项目类别:重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
- 批准号:71172046
- 批准年份:2011
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.04万 - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
$ 26.04万 - 项目类别:
Standard Grant
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
- 批准号:
2879209 - 财政年份:2023
- 资助金额:
$ 26.04万 - 项目类别:
Studentship
Integrating user experience data into image algorithms to mitigate online harm
将用户体验数据集成到图像算法中以减轻在线危害
- 批准号:
10069642 - 财政年份:2023
- 资助金额:
$ 26.04万 - 项目类别:
Collaborative R&D
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
- 批准号:
2224718 - 财政年份:2022
- 资助金额:
$ 26.04万 - 项目类别:
Standard Grant
Investigating models, applications, and limitations of online algorithms
研究在线算法的模型、应用和局限性
- 批准号:
RGPIN-2018-06687 - 财政年份:2022
- 资助金额:
$ 26.04万 - 项目类别:
Discovery Grants Program - Individual
Investigating models, applications, and limitations of online algorithms
研究在线算法的模型、应用和局限性
- 批准号:
RGPIN-2018-06687 - 财政年份:2022
- 资助金额:
$ 26.04万 - 项目类别:
Discovery Grants Program - Individual
Optimal Online Machine Learning Algorithms
最佳在线机器学习算法
- 批准号:
555789-2020 - 财政年份:2022
- 资助金额:
$ 26.04万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Online algorithms for scheduling with testing to minimize average completion time
用于调度测试的在线算法,以最大限度地缩短平均完成时间
- 批准号:
573110-2022 - 财政年份:2022
- 资助金额:
$ 26.04万 - 项目类别:
University Undergraduate Student Research Awards
Investigating models, applications, and limitations of online algorithms
研究在线算法的模型、应用和局限性
- 批准号:
RGPIN-2018-06687 - 财政年份:2021
- 资助金额:
$ 26.04万 - 项目类别:
Discovery Grants Program - Individual