Artificial Biochemical Networks: Computational Models and Architectures
人工生化网络:计算模型和架构
基本信息
- 批准号:EP/F060041/1
- 负责人:
- 金额:$ 80.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Previous work by ourselves and others has shown how the structure and organisation of biological organisms can motivate the design of computer hardware and software, with the aim of capturing useful properties such as complex information processing and resistance to environmental perturbation. This proposal focuses upon one of the most complex sets of structures found in biological systems: biochemical networks. These structures are fundamental to the development, function and evolution of biological organisms, and are the main factor underlying the complexity seen within higher organisms. Previous attempts to build hardware and software systems motivated by these structures has led to a group of computer architectures which we collectively refer to as artificial biochemical network models. The best known of these is the artificial genetic network, which has shown itself to be an effective means of expressing complex computational behaviours, particularly within robotic control. Nevertheless, this field of research has received relatively little attention, and little is known about the computational properties of these architectures. The aim of the proposed work is to develop better artificial biochemical network models, which we will do by both bringing together existing work and introducing new understanding from the biological sciences. We will also develop a theoretical framework to better understand what these computational architectures are capable of, and show how how these models can be applied to the difficult problem of controlling a robot in real world environments. It is expected that this work will also produce insights into the function and evolution of the biological systems on which the architectures are modelled.
我们和其他人以前的工作已经表明,生物有机体的结构和组织如何激励计算机硬件和软件的设计,目的是捕获有用的特性,如复杂的信息处理和对环境扰动的抵抗力。这个建议集中在生物系统中发现的最复杂的结构之一:生化网络。这些结构对于生物有机体的发育、功能和进化至关重要,也是高等生物体内部复杂性的主要因素。以前试图建立硬件和软件系统的动机,这些结构导致了一组计算机架构,我们统称为人工生物化学网络模型。其中最著名的是人工遗传网络,它已被证明是表达复杂计算行为的有效手段,特别是在机器人控制中。然而,这一领域的研究得到了相对较少的关注,并鲜为人知的是,这些架构的计算性能。拟议工作的目的是开发更好的人工生物化学网络模型,我们将通过整合现有工作和引入生物科学的新理解来实现这一目标。我们还将开发一个理论框架,以更好地理解这些计算架构的能力,并展示如何将这些模型应用于控制机器人在真实的世界环境中的难题。预计这项工作也将产生对生物系统的功能和进化的见解,这些生物系统是建立在这些结构的基础上的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Artificial Epigenetic Regulatory Networks To Control Complex Tasks Within Chaotic Systems
使用人工表观遗传调控网络来控制混沌系统中的复杂任务
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Andrew Martin Tyrrell (Author)
- 通讯作者:Andrew Martin Tyrrell (Author)
Adaptive robotic gait control using coupled artificial signalling networks, hopf oscillators and inverse kinematics
使用耦合人工信号网络、hopf 振荡器和逆运动学的自适应机器人步态控制
- DOI:10.1109/cec.2013.6557732
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Fuente L
- 通讯作者:Fuente L
Improving the transparency of deep neural networks using artificial epigenetic molecules
使用人工表观遗传分子提高深度神经网络的透明度
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lacey G.
- 通讯作者:Lacey G.
Information Processign in Cells and Tissues
细胞和组织中的信息处理
- DOI:10.1007/978-3-642-28792-3_22
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Lones M
- 通讯作者:Lones M
Biochemical connectionism
生化联结论
- DOI:10.1007/s11047-013-9400-y
- 发表时间:2013
- 期刊:
- 影响因子:2.1
- 作者:Lones M
- 通讯作者:Lones M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andy Tyrrell其他文献
Biologically Inspired Real-Time Reconfiguration Technique for Processor Arrays
- DOI:
10.1016/s1474-6670(17)42161-6 - 发表时间:
1998-04-01 - 期刊:
- 影响因子:
- 作者:
Cesar Ortega;Andy Tyrrell - 通讯作者:
Andy Tyrrell
On the differences between conventional and auditory spectrograms of English consonants
英语辅音常规谱图与听觉谱图的差异
- DOI:
10.1080/14015430050175923 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Tim S. Brookes;Andy Tyrrell;D. Howard - 通讯作者:
D. Howard
Special issue on the frontiers of natural computing
- DOI:
10.1007/s11047-013-9402-9 - 发表时间:
2013-10-20 - 期刊:
- 影响因子:1.600
- 作者:
Michael Lones;Andy Tyrrell;Susan Stepney;Leo Caves - 通讯作者:
Leo Caves
Andy Tyrrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andy Tyrrell', 18)}}的其他基金
Autonomous Robot Evolution (ARE): Cradle to Grave
自主机器人进化(ARE):从摇篮到坟墓
- 批准号:
EP/R03561X/1 - 财政年份:2018
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Bio-inspired Adaptive Architectures and Systems
仿生自适应架构和系统
- 批准号:
EP/K040820/1 - 财政年份:2014
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
PAnDA: Programmable Analogue and Digital Array
PAnDA:可编程模拟和数字阵列
- 批准号:
EP/I005838/1 - 财政年份:2010
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Molecular Software and Hardware for Programmed Chemical Synthesis
用于程序化化学合成的分子软件和硬件
- 批准号:
EP/F055951/1 - 财政年份:2008
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Self-healing Cellular Architectures for Biologically-inspired Highly Reliable Electronic Systems
用于受生物学启发的高可靠性电子系统的自愈蜂窝架构
- 批准号:
EP/F062192/1 - 财政年份:2008
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Software-controlled assembly of oligomers
软件控制的低聚物组装
- 批准号:
EP/F008279/1 - 财政年份:2007
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Automatic Design of Adaptive Systems using Unconstrained Evolution and Development on the POEtic Platform
在 POEtic 平台上使用无约束进化和开发的自适应系统的自动设计
- 批准号:
EP/E028381/1 - 财政年份:2007
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
Meeting the design challenges of the nano-CMOS electronics
应对纳米 CMOS 电子器件的设计挑战
- 批准号:
EP/E001610/1 - 财政年份:2006
- 资助金额:
$ 80.44万 - 项目类别:
Research Grant
相似海外基金
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of genetic, biochemical and analog electronic networks
遗传、生化和模拟电子网络的动力学
- 批准号:
RGPIN-2017-04042 - 财政年份:2022
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods with Applications to Biochemical Networks
数值方法及其在生化网络中的应用
- 批准号:
RGPIN-2020-05469 - 财政年份:2022
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Particle-based methods for flow applications and biochemical networks
用于流动应用和生化网络的基于粒子的方法
- 批准号:
RGPIN-2017-04672 - 财政年份:2022
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Particle-based methods for flow applications and biochemical networks
用于流动应用和生化网络的基于粒子的方法
- 批准号:
RGPIN-2017-04672 - 财政年份:2021
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Biochemical measures of gene expression networks and neural circuits.
基因表达网络和神经回路的生化测量。
- 批准号:
RTI-2022-00057 - 财政年份:2021
- 资助金额:
$ 80.44万 - 项目类别:
Research Tools and Instruments
Numerical Methods with Applications to Biochemical Networks
数值方法及其在生化网络中的应用
- 批准号:
RGPIN-2020-05469 - 财政年份:2021
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of genetic, biochemical and analog electronic networks
遗传、生化和模拟电子网络的动力学
- 批准号:
RGPIN-2017-04042 - 财政年份:2021
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2021
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods with Applications to Biochemical Networks
数值方法及其在生化网络中的应用
- 批准号:
RGPIN-2020-05469 - 财政年份:2020
- 资助金额:
$ 80.44万 - 项目类别:
Discovery Grants Program - Individual