Self-healing Cellular Architectures for Biologically-inspired Highly Reliable Electronic Systems

用于受生物学启发的高可靠性电子系统的自愈蜂窝架构

基本信息

  • 批准号:
    EP/F062192/1
  • 负责人:
  • 金额:
    $ 50.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Powerful and sophisticated systems, from computers, through control systems, to 'conventional' household appliances have become a necessity in our modern way of life. In the modern world of digital electronics - virtually all of which is now built using VLSI technology - we are quite accustomed to the idea that hundreds of thousands, often millions, of individual components on a chip must work faultlessly over extended periods of time. Yet, it commonly requires only a single transistor to fail to have catastrophic consequences for the entire system. Imagine an automobile travelling at high speed in the fast line of a busy motorway. Suddenly, the electronic Engine Management Unit (EMU) develops a malfunction, the engine cuts out; soon after this the servo-assisted brakes and steering (that depend on the engine inlet manifold vacuum) both cease to function properly; a queue of stationary vehicles is fast approaching. The outcome of this scenario is left to the reader's imagination. This is a somewhat dramatic thought-experiment, but one that brings the safety-criticality and reliability aspects of some everyday digital electronic components in our lives into stark focus. The design of complex, but reliable, electronic systems and ensuring their long-term fault free operation is a major challenge we face today. This demand is even more pronounced in the case of electronic systems where their correct operation is imperative, e.g., anti-lock braking systems, fly-by-wire aircraft, space exploration, industrial control and shutdown systems; they should be able to operate correctly in the presence of faults and be fault tolerant. How can we design such reliable systems? Nature offers some remarkable examples dealing with complexity and unreliability. Living organisms, and in particular the human body, is one of the most complex systems ever known. Yet they possess an extremely high degree of reliability. Although local failures, due to harmful pathogens and environmental conditions, are common, the overall function of the organism is highly reliable. Many of the cells and tissues die as a result of damage, but because self-diagnostic and self-healing continues incessantly, full functional integrity of the body is not compromised. It will carry on working properly because the body's defence mechanism, comprising numerous immune responses, will try to restore its full functionality. We could therefore justly ask ourselves the question; would it be more efficient and less costly to draw inspiration from nature in how it deals with the complexity vs. unreliability issue with such a remarkable degree of efficiency? The challenge we propose to take on, therefore, is to adapt biological processes found in living beings in our pursuit of designing reliable electronic systems that demand an ever increasing level of complexity. Although a great deal has already been achieved in these areas, much of this progress having been made by the two collaborators in this proposal, there remains still a vast amount to be done. The objective of this proposal is to evaluate and apply novel, biologically inspired, processes and algorithms for building reliable VLSI systems on silicon that possess self-diagnostic and self-healing properties. Inspired by nature, our research will adapt properties of biological systems, such as their multi-cellular organisation and evolutionary development, to create efficient electronic systems. It will also apply biological processes and the characteristics of both the innate and the acquired immune system to help solve the reliability and fault tolerant issues of artificial systems at cell, tissue (subsystem) and also at organism (system) levels. Our research will aim to pave the way for a biologically inspired unique design approach for electronics systems across a wide range of applications; from communication, through computing and control, to systems operating in hostile environments.
强大而复杂的系统,从计算机到控制系统,再到“传统”家用电器,已经成为我们现代生活方式的必需品。在现代的数字电子世界中--几乎所有的数字电子都是用超大规模集成电路技术制造的--我们已经习惯了这样一种想法,即芯片上的几十万个,通常是几百万个单独的元件必须在很长的时间内正常工作。然而,它通常只需要一个晶体管失败,对整个系统造成灾难性的后果。想象一下,一辆汽车在忙碌的高速公路上高速行驶。突然,电子发动机管理单元(EMU)出现故障,发动机熄火;不久之后,伺服辅助制动器和转向(取决于发动机进气歧管真空)都停止正常工作;一队静止的车辆正在快速接近。这个情节的结局留给读者去想象。这是一个有点戏剧性的思想实验,但它使我们生活中一些日常数字电子元件的安全关键性和可靠性方面成为焦点。设计复杂但可靠的电子系统并确保其长期无故障运行是我们今天面临的主要挑战。在电子系统的正确操作是必要的情况下,这种要求甚至更加明显,例如,防抱死制动系统、电传操纵飞机、空间探索、工业控制和关闭系统;它们应该能够在出现故障时正确运行并具有容错能力。如何设计出如此可靠的系统?自然界提供了一些处理复杂性和不可靠性的显著例子。生物体,特别是人体,是有史以来最复杂的系统之一。然而,它们具有极高的可靠性。虽然由于有害病原体和环境条件导致的局部失效很常见,但生物体的整体功能非常可靠。许多细胞和组织因损伤而死亡,但由于自我诊断和自我修复持续不断,身体的完整功能不会受到损害。它将继续正常工作,因为身体的防御机制,包括许多免疫反应,将试图恢复其全部功能。因此,我们可以公正地问自己这样一个问题:从大自然中汲取灵感,以如此显著的效率处理复杂性与不可靠性的问题,是否会更有效,成本更低?因此,我们提出的挑战是,在我们追求设计可靠的电子系统时,适应生物中发现的生物过程,这些系统需要不断增加的复杂性。虽然在这些领域已经取得了很大的进展,其中大部分是由本提案的两个合作者取得的,但仍有大量工作要做。该提案的目的是评估和应用新的,生物启发,工艺和算法,用于在硅上建立可靠的VLSI系统,具有自我诊断和自我修复的特性。受大自然的启发,我们的研究将适应生物系统的特性,例如它们的多细胞组织和进化发展,以创建高效的电子系统。它还将应用生物过程以及先天和后天免疫系统的特性,以帮助解决人工系统在细胞,组织(子系统)和生物体(系统)水平上的可靠性和容错问题。我们的研究旨在为各种应用中的电子系统的生物启发独特设计方法铺平道路;从通信,通过计算和控制,到在恶劣环境中运行的系统。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-objective optimisation of cell-array circuit evolution
单元阵列电路演化的多目标优化
  • DOI:
    10.1109/cec.2011.5949651
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bremner P
  • 通讯作者:
    Bremner P
Automatic Code Generation on a MOVE Processor Using Cartesian Genetic Programming
使用笛卡尔遗传编程在 MOVE 处理器上自动生成代码
From Bidirectional Associative Memory to a noise-tolerant, robust Protein Processor Associative Memory
从双向联想记忆到耐噪、稳健的蛋白质处理器联想记忆
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    14.4
  • 作者:
    Andrew Martin Tyrrell (Author)
  • 通讯作者:
    Andrew Martin Tyrrell (Author)
A Developmental and Immune-Inspired Dynamic Task Allocation Algorithm for Microprocessor Array Systems
用于微处理器阵列系统的发育和免疫启发的动态任务分配算法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Martin Tyrrell (Author)
  • 通讯作者:
    Andrew Martin Tyrrell (Author)
Hardware architecture for a Bidirectional Hetero-Associative Protein Processing Associative Memory
双向异质关联蛋白质处理关联存储器的硬件​​架构
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Martin Tyrrell (Author)
  • 通讯作者:
    Andrew Martin Tyrrell (Author)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andy Tyrrell其他文献

Biologically Inspired Real-Time Reconfiguration Technique for Processor Arrays
  • DOI:
    10.1016/s1474-6670(17)42161-6
  • 发表时间:
    1998-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cesar Ortega;Andy Tyrrell
  • 通讯作者:
    Andy Tyrrell
On the differences between conventional and auditory spectrograms of English consonants
英语辅音常规谱图与听觉谱图的差异
  • DOI:
    10.1080/14015430050175923
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim S. Brookes;Andy Tyrrell;D. Howard
  • 通讯作者:
    D. Howard
Special issue on the frontiers of natural computing
  • DOI:
    10.1007/s11047-013-9402-9
  • 发表时间:
    2013-10-20
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Michael Lones;Andy Tyrrell;Susan Stepney;Leo Caves
  • 通讯作者:
    Leo Caves

Andy Tyrrell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andy Tyrrell', 18)}}的其他基金

Autonomous Robot Evolution (ARE): Cradle to Grave
自主机器人进化(ARE):从摇篮到坟墓
  • 批准号:
    EP/R03561X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Bio-inspired Adaptive Architectures and Systems
仿生自适应架构和系统
  • 批准号:
    EP/K040820/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
PAnDA: Programmable Analogue and Digital Array
PAnDA:可编程模拟和数字阵列
  • 批准号:
    EP/I005838/1
  • 财政年份:
    2010
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Molecular Software and Hardware for Programmed Chemical Synthesis
用于程序化化学合成的分子软件和硬件
  • 批准号:
    EP/F055951/1
  • 财政年份:
    2008
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Artificial Biochemical Networks: Computational Models and Architectures
人工生化网络:计算模型和架构
  • 批准号:
    EP/F060041/1
  • 财政年份:
    2008
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Automatic Design of Adaptive Systems using Unconstrained Evolution and Development on the POEtic Platform
在 POEtic 平台上使用无约束进化和开发的自适应系统的自动设计
  • 批准号:
    EP/E028381/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Software-controlled assembly of oligomers
软件控制的低聚物组装
  • 批准号:
    EP/F008279/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant
Meeting the design challenges of the nano-CMOS electronics
应对纳米 CMOS 电子器件的设计挑战
  • 批准号:
    EP/E001610/1
  • 财政年份:
    2006
  • 资助金额:
    $ 50.08万
  • 项目类别:
    Research Grant

相似国自然基金

力学环境对骨愈合初期的新生血管形成图式的影响研究
  • 批准号:
    11072021
  • 批准年份:
    2010
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
烧伤大鼠骨髓间充质干细胞迁移到外周血机制的研究
  • 批准号:
    30670824
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
诱导人间充质干细胞表型转化为汗腺细胞及其再生汗腺的基础研究
  • 批准号:
    30500194
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
转染EDA-A1基因诱导表皮干细胞分化为汗腺细胞的研究
  • 批准号:
    30400172
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
  • 批准号:
    10685132
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
  • 批准号:
    10627578
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Deciphering Cellular Heterogeneity and Inheritability in Migration
解读迁移中的细胞异质性和遗传性
  • 批准号:
    10710996
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Lymphatic Regeneration by Direct Cellular Reprogramming
通过直接细胞重编程实现淋巴再生
  • 批准号:
    10744935
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Characterization and function of a new p75-NTR+ cellular network in craniofacial bone
颅面骨中新型 p75-NTR 细胞网络的特征和功能
  • 批准号:
    10571278
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Cellular and molecular delineation of pathologic fibroblasts in pulmonary fibrosis
肺纤维化中病理性成纤维细胞的细胞和分子描绘
  • 批准号:
    10852403
  • 财政年份:
    2023
  • 资助金额:
    $ 50.08万
  • 项目类别:
Cellular metabolism at the crossroads of skeletal regeneration
处于骨骼再生十字路口的细胞代谢
  • 批准号:
    10529832
  • 财政年份:
    2022
  • 资助金额:
    $ 50.08万
  • 项目类别:
Acquisition of a core research microscope for imaging long-term cellular signaling dynamics and optogenetic manipulation
购买核心研究显微镜,用于长期细胞信号动力学和光遗传学操作成像
  • 批准号:
    10797751
  • 财政年份:
    2022
  • 资助金额:
    $ 50.08万
  • 项目类别:
Dynamics of the cellular and molecular architecture of human pulmonary TB granulomas
人肺结核肉芽肿细胞和分子结构的动力学
  • 批准号:
    10358379
  • 财政年份:
    2022
  • 资助金额:
    $ 50.08万
  • 项目类别:
Targeting cellular senescence with oral fisetin supplementation to improve vascular aging
通过口服非瑟酮补充剂对抗细胞衰老,改善血管老化
  • 批准号:
    10538199
  • 财政年份:
    2022
  • 资助金额:
    $ 50.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了