High stability and high efficiency printable photovoltaics (OPV) for large-scale energy production
用于大规模能源生产的高稳定性和高效率可印刷光伏 (OPV)
基本信息
- 批准号:EP/F061757/1
- 负责人:
- 金额:$ 110.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The depletion of oil reserves, spiralling fuel costs, concerns about the security of global energy supplies, and belated worldwide recognition of fossil-fuel induced climate change have sparked an urgent and unprecedented demand for sustainable energy sources. Amongst all of these sources solar photovoltaic (PV) energy stands out as the only one with sufficient theoretical capacity to meet global electricity needs, but high costs of silicon based PV prohibit widespread take-up. In this programme, we focus on the development of organic photovoltaics (OPV) as a low cost technology with the potential to displace conventional power sources. The proposed programme links Imperial College London with four leading Chinese institutions, building on ICL's strengths in the physics and application of molecular electronic materials and devices and on our partners' strengths in speciality materials development and scale-up. A collaborative programme between the UK and China in this area is particularly timely, given the pressing need for alternative power sources that are capable of meeting the rapid development rate and large energy demand of China. Our proposal focuses on solution-processable organic molecules and polymers which share many of the chemical, structural and rheological properties of the inks used in conventional printing and which are amenable to large-scale production through the existing printing and coating industries. Although the project is focused on fundamental research in enhancing the efficiency and lifetime of OPV devices, the technology developed in this project will be compatible with high throughput manufacturing processes for large-scale production. In addition, the programme stands to benefit from the capabilities in China for transferring technological developments into local production. Solution processable OPV devices are typically based on the combination of an electron donor material (usually a conjugated polymer) and an electron acceptor (typically a fullerene derivative) in a bulk heterojunction structure. Absorbed photons of light create excitons which dissociate at the donor/acceptor interface to yield separated charges. The composite film is sandwiched between two different electrodes which drive photocurrent generation through the asymmetry in their electron affinities. The power conversion efficiency of OPV devices currently stands at 5%, and increases in both efficiency and lifetime are required to stimulate commercialization. Device models indicate that power conversion efficiencies of 8 % or more are available with polymer materials possessing sufficiently high oxidation potential and electrode materials with higher work function than those currently available. In this proposal, new polymer and electrode materials will be developed which possess the required properties for higher efficiency, new material which offer higher device stability will be designed and evaluated, and processing techniques compatible with large scale, high volume production will be developed. The programme brings together the expertise of the ICL team in device design, fabrication, characterisation and processing with the expertise of four leading Chinese institutions in synthesis of specialized organic semiconductors and their application in light emitting devices. Application of materials and device designs to light emission will also be investigated where appropriate, in order to explore the potential for energy savings in the lighting market.
石油储量的枯竭、燃料成本的螺旋式上升、对全球能源供应安全的担忧,以及全球对化石燃料引发的气候变化姗姗来迟的认识,引发了对可持续能源的迫切和前所未有的需求。在所有这些能源中,太阳能光伏(PV)能源作为唯一具有足够理论容量来满足全球电力需求的能源脱颖而出,但硅基光伏的高成本阻碍了其广泛应用。在这个项目中,我们的重点是有机光伏(OPV)的发展,作为一种低成本的技术,有可能取代传统的电源。拟议中的项目将帝国理工学院与四家中国领先的机构联系起来,利用伦敦帝国理工学院在分子电子材料和器件的物理和应用方面的优势,以及我们的合作伙伴在特种材料开发和规模化方面的优势。考虑到中国对替代能源的迫切需求,以满足中国快速发展和巨大的能源需求,中英两国在这一领域的合作计划尤为及时。我们的建议侧重于溶液可加工的有机分子和聚合物,它们与传统印刷中使用的油墨具有许多化学、结构和流变特性,并且可以通过现有的印刷和涂料行业进行大规模生产。虽然该项目侧重于提高OPV器件效率和寿命的基础研究,但该项目开发的技术将与大规模生产的高通量制造工艺兼容。此外,该方案将受益于中国将技术发展转化为当地生产的能力。溶液可加工的OPV器件通常基于体异质结结构中的电子给体材料(通常是共轭聚合物)和电子受体(通常是富勒烯衍生物)的组合。被吸收的光子产生激子,激子在供体/受体界面解离,产生分离的电荷。复合薄膜被夹在两个不同的电极之间,这两个电极通过它们的电子亲和力的不对称来驱动光电流的产生。OPV器件的功率转换效率目前为5%,为了促进商业化,需要提高效率和寿命。器件模型表明,具有足够高氧化电位的聚合物材料和具有比现有材料更高功函数的电极材料可实现8%或更高的功率转换效率。在本提案中,将开发具有更高效率所需性能的新聚合物和电极材料,将设计和评估提供更高器件稳定性的新材料,并将开发适合大规模,大批量生产的加工技术。该项目汇集了ICL团队在器件设计、制造、表征和加工方面的专业知识,以及中国四家领先机构在专业有机半导体合成及其在发光器件中的应用方面的专业知识。在适当的情况下,我们也会研究材料和器件设计在发光方面的应用,以探索照明市场的节能潜力。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM
- DOI:10.1002/aenm.201400311
- 发表时间:2014-10-07
- 期刊:
- 影响因子:27.8
- 作者:Foster, Samuel;Deledalle, Florent;Nelson, Jenny
- 通讯作者:Nelson, Jenny
Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes
- DOI:10.1002/adma.201100871
- 发表时间:2011-10-11
- 期刊:
- 影响因子:29.4
- 作者:Leem, Dong-Seok;Edwards, Angharad;de Mello, John C.
- 通讯作者:de Mello, John C.
A preliminary study of vapour-phase polymerized poly(3,4-ethylenedioxythiophene) as a transparent neural electrode
气相聚合聚(3,4-乙烯二氧噻吩)透明神经电极的初步研究
- DOI:10.1109/icsens.2011.6127193
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Campbell A
- 通讯作者:Campbell A
Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors
- DOI:10.1002/aenm.201200673
- 发表时间:2013-06-01
- 期刊:
- 影响因子:27.8
- 作者:Faist, Mark A.;Shoaee, Safa;Nelson, Jenny
- 通讯作者:Nelson, Jenny
Effect of Multiple Adduct Fullerenes on Charge Generation and Transport in Photovoltaic Blends with Poly(3-hexylthiophene-2,5-diyl)
- DOI:10.1002/polb.22125
- 发表时间:2011-01-01
- 期刊:
- 影响因子:0
- 作者:Faist, Mark A.;Keivanidis, Panagiotis E.;Nelson, Jenny
- 通讯作者:Nelson, Jenny
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donal Bradley其他文献
Plastic lasers shine brightly
塑料激光闪耀着明亮的光芒
- DOI:
10.1038/382671a0 - 发表时间:
1996-08-22 - 期刊:
- 影响因子:48.500
- 作者:
Donal Bradley - 通讯作者:
Donal Bradley
Donal Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donal Bradley', 18)}}的其他基金
University of Oxford - Capital Award in Support of Early Career Researchers
牛津大学 - 支持早期职业研究人员的资本奖
- 批准号:
EP/S017658/1 - 财政年份:2018
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
Experimental Equipment Call for Imperial College London
伦敦帝国理工学院实验设备征集
- 批准号:
EP/M028291/1 - 财政年份:2015
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
Frontier Manufacturing: Scaling up synthetic biology
前沿制造:扩大合成生物学规模
- 批准号:
EP/K038648/1 - 财政年份:2013
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
IAA Proposal Imperial College London
IAA 提案 伦敦帝国理工学院
- 批准号:
NE/L013134/1 - 财政年份:2013
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
Imperial College London - Equipment Account
伦敦帝国理工学院 - 设备账户
- 批准号:
EP/J021199/1 - 财政年份:2012
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
Small Items of Research Equipment at Imperial College London
伦敦帝国理工学院的小型研究设备
- 批准号:
EP/K030760/1 - 财政年份:2012
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
2010 grant balance Imperial College London
2010年伦敦帝国学院补助金余额
- 批准号:
EP/J018201/1 - 财政年份:2011
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
Hybrid organic semiconductor/gallium nitride/CMOS smart pixel arrays
混合有机半导体/氮化镓/CMOS智能像素阵列
- 批准号:
EP/F061609/1 - 财政年份:2008
- 资助金额:
$ 110.17万 - 项目类别:
Research Grant
相似国自然基金
LED芯片老化过程中有源区的缺陷演化机理研究
- 批准号:61504112
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
p型GaN单晶衬底的HVPE制备及生长物理研究
- 批准号:61574164
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
III-族氮化物LEDs的复杂界面对注入载流子发光效率影响的研究
- 批准号:11174241
- 批准年份:2011
- 资助金额:51.0 万元
- 项目类别:面上项目
大功率InGaN基LED新型外延结构研究
- 批准号:61076119
- 批准年份:2010
- 资助金额:50.0 万元
- 项目类别:面上项目
收缩估计作为模型选择方法的有效性研究
- 批准号:10771006
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Standard Grant
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Discovery Early Career Researcher Award
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Standard Grant
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals
循环和生物底物的电化学氧化,用于高效生产有机化学品
- 批准号:
10111012 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
EU-Funded
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Linkage Projects
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Launchpad
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
$ 110.17万 - 项目类别:
Collaborative R&D