HermiT: Reasoning with Large Ontologies

HermiT:利用大型本体进行推理

基本信息

  • 批准号:
    EP/F065841/1
  • 负责人:
  • 金额:
    $ 61.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Ontologies are formal vocabularies of terms, often shared by a community of users. One of the most prominent application areas of ontologies is medicine and the life sciences. For example, the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) is a clinical ontology which is being used in the UK Health Service's National Programme for Information Technology (NPfIT). Other examples include GALEN, the Foundational Model of Anatomy (FMA), the National Cancer Institute (NCI) Thesaurus, and the OBO Foundry -- a repository containing about 80 biomedical ontologies.These ontologies are gradually superseding existing medical classifications and will provide the future platforms for gathering and sharing medical knowledge. Capturing medical records using ontologies will reduce the possibility for data misinterpretation, and will enable information exchange between different applications and institutions. Medical ontologies are strongly related to description logics (DLs), which provide the formal basis for many ontology languages, most notably the W3C standardised Web Ontology Language (OWL). All the above mentioned ontologies are nowadays available in OWL and, therefore, in a description logic. The developers of medical ontologies have recognised the numerous benefits of using DLs, such as the clear and unambiguous semantics for different modelling constructs, the well-understood tradeoffs between expressivity and computational complexity, and the availability of provably correct reasoners and tools.The development and application of ontologies crucially depend on reasoning. Ontology classification, i.e., organising classes into a specialisation/generalisation hierarchy, is a reasoning task that plays a major role during ontology development: it provides for the detection of potential modelling errors such as inconsistent class descriptions and missing sub-class relationships. For example, about 180 missing sub-class relationships were detected when the version of SNOMED CT used by the NHS was classified using the DL reasoner FaCT++. Query answering is another reasoning task that is mainly used during ontology-based information retrieval; e.g., in clinical applications query answering might be used to retrieve all patients that suffer from nut allergies . Despite the impressive state-of-the-art, modern medical ontologies pose significant challenges to both the theory and practice of DL-based languages. Existing reasoners can efficiently deal with some large ontologies, such as NCI, but many important ontologies are still beyond the reach of available tools. For example, none of the existing reasoners can successfully classify either GALEN or FMA. Applications currently need to work around these limitations, e.g., by using subsets of ontologies that can be successfully processed. For example, the version of GALEN typically used in practice contains only about 20% of the axioms of the full version; this reduces the interaction between concepts and thus makes the ontology processable . This is, however, highly undesirable in practice, because it reduces coverage, weakens the conceptualisation of the domain and may prevent the detection of modelling errors.Furthermore, the amount of data used with ontologies can be orders of magnitude larger than the ontology itself. For example, the annotation of patients' medical records in a single hospital can easily produce data consisting of hundreds of millions of facts, and aggregation at a national level might produce billions of facts. Existing reasoners cannot cope with such data volumes, especially not if ontologies such as GALEN and FMA are used as schemata.The goal of this project is to develop scalable reasoning algorithms and a prototypical implementation that can efficiently deal with large and complex ontologies and large data sets. Developing such a reasoner will be critical to the success of many ontology based applications.
本体是术语的正式词汇表,通常由用户社区共享。本体论最突出的应用领域之一是医学和生命科学。例如,医学临床术语系统化命名法(SNOMED CT)是一种临床本体,正在英国卫生服务的国家信息技术计划(NPfIT)中使用。其他例子包括GALEN、解剖学基础模型(FMA)、国家癌症研究所(NCI)词库和OBO Foundry --一个包含大约80个生物医学本体的知识库。这些本体正在逐渐取代现有的医学分类,并将为收集和共享医学知识提供未来的平台。使用本体捕获医疗记录将减少数据误解的可能性,并将使不同的应用程序和机构之间的信息交换。医学本体与描述逻辑(DL)密切相关,描述逻辑为许多本体语言提供了形式化的基础,最著名的是W3C标准化的Web本体语言(OWL)。所有上面提到的本体现在在OWL中可用,因此,在描述逻辑中可用。医学本体的开发者已经认识到使用DL的许多好处,例如不同建模结构的清晰和明确的语义,表达性和计算复杂性之间的良好理解的权衡,以及可证明正确的推理机和工具的可用性。本体分类,即,将类组织成专门化/一般化层次结构是在本体开发期间起主要作用的推理任务:它提供了对潜在建模错误的检测,例如不一致的类描述和缺失的子类关系。例如,当使用DL推理器FaCT++对NHS使用的SNOMED CT版本进行分类时,检测到约180个缺失的子类关系。查询应答是另一个主要在基于本体的信息检索期间使用的推理任务;例如,在临床应用中,查询应答可用于检索患有坚果过敏症的所有患者。尽管令人印象深刻的国家的最先进的,现代医学本体提出了重大挑战的理论和实践的DL为基础的语言。现有的推理机可以有效地处理一些大的本体,如NCI,但许多重要的本体仍然超出了现有的工具。例如,没有一个现有的推理机可以成功地分类GALEN或FMA。应用程序目前需要解决这些限制,例如,通过使用可以被成功处理的本体的子集。例如,GALEN在实践中通常使用的版本只包含完整版本的20%的公理;这减少了概念之间的交互,从而使本体可处理。然而,这在实践中是非常不受欢迎的,因为它减少了覆盖范围,削弱了领域的概念化,并可能阻止建模错误的检测。此外,与本体一起使用的数据量可能比本体本身大几个数量级。例如,在一家医院对患者的医疗记录进行注释可以很容易地产生由数亿个事实组成的数据,而在国家一级进行汇总可能会产生数十亿个事实。现有的推理机不能科普这样的数据量,特别是如果本体,如GALEN和FMA被用作schemata.The项目的目标是开发可扩展的推理算法和原型实现,可以有效地处理大型和复杂的本体和大型数据集。开发这样一个推理机将是许多基于本体的应用程序的成功的关键。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Consequence-Based Reasoning for Description Logics with Disjunctions and Number Restrictions
  • DOI:
    10.1613/jair.1.11257
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Bate;B. Motik;B. C. Grau;David Tena Cucala;F. Simančík;Ian Horrocks
  • 通讯作者:
    A. Bate;B. Motik;B. C. Grau;David Tena Cucala;F. Simančík;Ian Horrocks
Hypertableau Reasoning for Description Logics
HermiT: An OWL 2 Reasoner
  • DOI:
    10.1007/s10817-014-9305-1
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Glimm, Birte;Horrocks, Ian;Wang, Zhe
  • 通讯作者:
    Wang, Zhe
A novel approach to ontology classification
  • DOI:
    10.1016/j.websem.2011.12.007
  • 发表时间:
    2012-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Birte Glimm;Ian Horrocks;B. Motik;Rob Shearer;G. Stoilos
  • 通讯作者:
    Birte Glimm;Ian Horrocks;B. Motik;Rob Shearer;G. Stoilos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Horrocks其他文献

OWL: A Description Logic Based Ontology Language
  • DOI:
    10.1007/11562931_1
  • 发表时间:
    2005-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Horrocks
  • 通讯作者:
    Ian Horrocks
Ontologies and Schema Languages on the Web
网络上的本体论和模式语言
  • DOI:
    10.7551/mitpress/6412.003.0006
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Klein;J. Broekstra;D. Fensel;F. V. Harmelen;Ian Horrocks
  • 通讯作者:
    Ian Horrocks
KR and Reasoning on the Semantic Web: OWL
KR 和语义网上的推理:OWL
  • DOI:
    10.1007/978-3-540-92913-0_9
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Horrocks;P. Patel
  • 通讯作者:
    P. Patel
Satisfaction and Implication of Integrity Constraints in Ontology-based Data Access
基于本体的数据访问中完整性约束的满足和含义
  • DOI:
    10.24963/ijcai.2019/253
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Nikolaou;B. C. Grau;Egor V. Kostylev;M. Kaminski;Ian Horrocks
  • 通讯作者:
    Ian Horrocks
OBO and OWL: Leveraging Semantic Web Technologies for the Life Sciences
OBO 和 OWL:利用语义网技术促进生命科学
  • DOI:
    10.1007/978-3-540-76298-0_13
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Golbreich;M. Horridge;Ian Horrocks;B. Motik;Rob Shearer
  • 通讯作者:
    Rob Shearer

Ian Horrocks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Horrocks', 18)}}的其他基金

ConCur: Knowledge Base Construction and Curation
ConCur:知识库构建和管理
  • 批准号:
    EP/V050869/1
  • 财政年份:
    2021
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
ED3: Enabling analytics over Diverse Distributed Datasources
ED3:支持对不同分布式数据源的分析
  • 批准号:
    EP/N014359/1
  • 财政年份:
    2016
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
DBOnto: Bridging Databases and Ontologies
DBOnto:桥接数据库和本体
  • 批准号:
    EP/L012138/1
  • 财政年份:
    2014
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
ExODA: Integrating Description Logics and Database Technologies for Expressive Ontology-Based Data Access
ExODA:集成描述逻辑和数据库技术以实现基于表达本体的数据访问
  • 批准号:
    EP/H051511/1
  • 财政年份:
    2011
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
ConDOR: Consequence-Driven Ontology Reasoning
ConDOR:结果驱动的本体推理
  • 批准号:
    EP/G02085X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
LOGO: Logics for Ontologies
LOGO:本体逻辑
  • 批准号:
    EP/C543319/2
  • 财政年份:
    2007
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Fellowship
Reasoning Infrastructure for Ontologies and Instances
本体和实例的推理基础设施
  • 批准号:
    EP/E03781X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
REOL: Reasoning for Expressive Ontology Languages
REOL:表达本体语言的推理
  • 批准号:
    EP/C537211/2
  • 财政年份:
    2007
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grant
LOGO: Logics for Ontologies
LOGO:本体逻辑
  • 批准号:
    EP/C543319/1
  • 财政年份:
    2006
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Fellowship

相似海外基金

RI: Small: Large-Scale Game-Theoretic Reasoning with Incomplete Information
RI:小型:不完整信息的大规模博弈论推理
  • 批准号:
    2214141
  • 财政年份:
    2023
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmental Data-Driven Inquiry and Exploration (EDDIE): Using Large Datasets to Build Quantitative Reasoning
协作研究:环境数据驱动的查询和探索(EDDIE):使用大型数据集构建定量推理
  • 批准号:
    1821567
  • 财政年份:
    2018
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmental Data-Driven Inquiry and Exploration - Using Large Datasets to Build Quantitative Reasoning
协作研究:环境数据驱动的探究与探索——利用大数据集构建定量推理
  • 批准号:
    1821564
  • 财政年份:
    2018
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636786
  • 财政年份:
    2017
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636795
  • 财政年份:
    2017
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636832
  • 财政年份:
    2017
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636870
  • 财政年份:
    2017
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
Large scale reasoning under uncertainty
不确定性下的大规模推理
  • 批准号:
    44121-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Discovery Grants Program - Individual
Reasoning over Large Amounts of Data in Ontologies via Abstraction and Refinement
通过抽象和细化对本体中的大量数据进行推理
  • 批准号:
    266736200
  • 财政年份:
    2015
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Research Grants
CIF21 DIBBs: STORM: Spatio-Temporal Online Reasoning and Management of Large Data
CIF21 DIBBs:STORM:大数据时空在线推理与管理
  • 批准号:
    1443046
  • 财政年份:
    2014
  • 资助金额:
    $ 61.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了