Micro-Outsourcing for Mechanical CAD/CAM

机械 CAD/CAM 微外包

基本信息

  • 批准号:
    EP/F067291/1
  • 负责人:
  • 金额:
    $ 12.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Recently the use of Crowdsourcing to deliver HITs has demonstrated a feasible way of providing cheap, robust, content based, Image analysis. This proposal seeks funding to investigate if a similar approach can be used to solve the geometric reasoning problems found in Mechanical CAD/CAM.Micro-outsourcing, or crowdsourcing, is a neologism for the act of taking a task traditionally performed by an employee or contractor, and outsourcing it to an undefined, generally large group of people, in the form of an open call. For example, the public may be invited to develop a new technology, carry out a design task, refine an algorithm or help capture, systematize or analyze large amounts of data. A Human Intelligence Task (HIT) is a problem that humans find simple, but computers find extremely difficult. For example a HIT related to a photograph could be: Is there a dog in this photograph? Many manufacturing operations require geometric reasoning to sequence, or recognize, various patterns, or constraints, in 2D and 3D shapes. Finding the best solutions to these problems would increase the productivity of numerous industries and impact directly on their profits. However frequently these types of problems are effectively incomputable (i.e. NP-complete) and so current practise is for CAD/CAM software to generate good , rather than optimum, solutions. If a Crowdsourcing approach to such difficult problems proves to be effective it would demonstrate how many similar pattern recognition and optimization problems manufacturing industry could be solved and provide a compelling demonstration of how a digital economy can distribute work, as well as, data. For much of its history CAD/CAM research has been motivated by the desire to increase the intelligence of systems by means of algorithms that could compute shape properties readily apparent to humans (eg. location of thin sections or holes). However this has proved to be difficult and where progress has been made it has generally solved special cases (eg. 2.5D geometry) rather than providing generic solutions. Examples of geometric reasoning problems still on the research agenda after decades of academic effort are numerous, for example: path planning, component packing, process planning, partial symmetry detection and shape feature recognition. Essential the difficulty is one of endowing computers with the appreciation of an object's overall form that humans gain so effortlessly. Interestingly similar difficulties have been encountered in image and speech recognition where automated systems still fail to reproduce human levels of performance.Because of this Geometric Reasoning represents a major technological bottleneck requiring many relatively trivial tasks to be done manually by engineers, a process that can be both time-consuming and sub-optimal (eg. frequently it will be infeasible to exhaustively explore all the alternatives paths, sequences or plans). Consequently removal of this geometric comprehension bottleneck would result in significant productivity gains across a wide range of industries. This proposal seeks to investigate the potential of a distributed approach (know colloquially as CrowdSourcing or Micro-outsourcing ) that has already proved its ability to provide practical solutions to many classic AI problems, such as image and speech interpretation. Research will use two exemplar applications to support a systematic investigation of the research issues. The first study will focus on a well defined task with easily quantifiable results (part nesting), while the second study will focus on a problem (shape similarity) easily stated but difficult to quantified.The project will create an experimental software platform, using the API of a commercial Crowdsourcing platform (i.e. Amazon's mechanical turk), to support the systematic investigation of the system's performance for these two different types of HIT.
最近,使用众包来提供HIT已经证明了一种提供廉价、健壮、基于内容的图像分析的可行方法。该提案寻求资金,以调查是否可以使用类似的方法来解决机械CAD/CAM中的几何推理问题。微外包或众包是一个新词,用于传统上由员工或承包商执行的任务,并将其外包给未定义的,通常是一大群人,以公开电话的形式。例如,可以邀请公众开发新技术,执行设计任务,改进算法或帮助捕获,系统化或分析大量数据。人类智能任务(Human Intelligence Task,HIT)是一个人类觉得很简单,但计算机觉得非常困难的问题。例如,与照片相关的HIT可以是:这张照片中有狗吗?许多制造操作需要几何推理来排序或识别2D和3D形状中的各种图案或约束。找到这些问题的最佳解决方案将提高许多行业的生产力,并直接影响其利润。然而,这些类型的问题往往是有效的不可计算的(即NP完全),因此目前的做法是CAD/CAM软件生成良好的,而不是最佳的解决方案。如果众包方法被证明是有效的,那么它将证明制造业可以解决多少类似的模式识别和优化问题,并提供一个令人信服的数字经济如何分配工作和数据的演示。在CAD/CAM研究的大部分历史中,其动机是希望通过算法来增加系统的智能,这些算法可以计算人类很容易看到的形状属性(例如:薄切片或孔的位置)。然而,事实证明这是困难的,在取得进展的地方,它通常解决了特殊情况(如:2.5D几何),而不是提供通用的解决方案。经过几十年的学术努力,几何推理问题仍然在研究议程上的例子很多,例如:路径规划,零件包装,工艺规划,部分对称检测和形状特征识别。关键的困难在于赋予计算机对物体整体形状的欣赏能力,而人类却可以毫不费力地获得这种能力。有趣的是,在图像和语音识别中也遇到了类似的困难,自动化系统仍然无法再现人类的性能水平。因此,几何推理是一个主要的技术瓶颈,需要工程师手动完成许多相对琐碎的任务,这是一个既耗时又不理想的过程(例如,几何推理)。通常,穷尽地探索所有备选路径、顺序或计划是不可行的)。因此,消除这一几何理解瓶颈将导致广泛行业的生产率显著提高。该提案旨在研究分布式方法(俗称众包或微外包)的潜力,该方法已经证明能够为许多经典的人工智能问题提供实用的解决方案,例如图像和语音解释。研究将使用两个范例应用程序来支持研究问题的系统调查。第一项研究将集中在一个明确的任务,易于量化的结果(部分嵌套),而第二项研究将集中在一个问题上该项目将创建一个实验软件平台,使用商业众包平台的API(即Amazon的mechanical turk),以支持对这两种不同类型的HIT的系统性能的系统调查。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Outsourcing labour to the cloud
将劳动力外包到云端
Geometric Reasoning With a Virtual Workforce (Crowd-sourcing for CAD/CAM)
使用虚拟劳动力进行几何推理(CAD/CAM 众包)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P Jagadeesan
  • 通讯作者:
    P Jagadeesan
Geometric reasoning via internet CrowdSourcing
通过互联网众包进行几何推理
  • DOI:
    10.1145/1629255.1629296
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jagadeesan A
  • 通讯作者:
    Jagadeesan A
Validation of Purdue Engineering Shape Benchmark clusters by Crowd-sourcing
通过众包验证普渡工程形状基准集群
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P Jagadeesan
  • 通讯作者:
    P Jagadeesan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Corney其他文献

System Modelling and Optimization for Digitally Supported Plasma Processing
  • DOI:
    10.1016/j.procir.2024.10.306
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alasdair Mitchell;Long Ye;Yunhao Xu;Bo Wang;Jonathan Corney;Xingyu Li;Nan Yu
  • 通讯作者:
    Nan Yu
Economic and ENvironmental Impact Assessment for Sustainability (EENIAS): An innovative method to support design for remanufacturing and remanufacturability evaluation
可持续性的经济与环境影响评估(EENIAS):一种支持再制造设计和再制造能力评估的创新方法
  • DOI:
    10.1016/j.spc.2025.03.019
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Aineias Karkasinas;Athanasios Rentizelas;Jonathan Corney
  • 通讯作者:
    Jonathan Corney
A proposed methodology to develop digital twin framework for plasma processing
  • DOI:
    10.1016/j.rineng.2024.103462
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alasdair Mitchell;Xinyang Wei;Rongyan Sun;Kazuya Yamamura;Long Ye;Jonathan Corney;Nan Yu
  • 通讯作者:
    Nan Yu
A state of the art review of hydroforming technology
  • DOI:
    10.1007/s12289-019-01507-1
  • 发表时间:
    2019-12-18
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Colin Bell;Jonathan Corney;Nicola Zuelli;David Savings
  • 通讯作者:
    David Savings
Enabling sheet hydroforming to produce smaller radii on aerospace nickel alloys
  • DOI:
    10.1007/s12289-018-1446-z
  • 发表时间:
    2018-10-18
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Colin Bell;Caleb Dixon;Bob Blood;Jonathan Corney;David Savings;Ellen Jump;Nicola Zuelli
  • 通讯作者:
    Nicola Zuelli

Jonathan Corney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Corney', 18)}}的其他基金

Productivity and Sustainability Management in the Responsive Factory
响应式工厂的生产力和可持续发展管理
  • 批准号:
    EP/V051113/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant
Design the Future 2: Enabling Design Re-use through Predictive CAD
设计未来 2:通过预测 CAD 实现设计重用
  • 批准号:
    EP/R004226/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant
Enabling Design Re-use through Predictive CAD
通过预测 CAD 实现设计重用
  • 批准号:
    EP/N005899/1
  • 财政年份:
    2015
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant
DISTRIBUTING INDUSTRIAL OPTIMIZATION TASKS TO RURAL WORKER
将产业优化任务分配给农民工
  • 批准号:
    EP/J000728/1
  • 财政年份:
    2011
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant
CUSTOMISATION OF COSMETIC COVERS FOR ARTIFICIAL LIMBS
定制假肢装饰套
  • 批准号:
    EP/I000577/1
  • 财政年份:
    2010
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant

相似海外基金

Education and Training Program for Outsourcing Facility Industry
外包设施行业教育培训计划
  • 批准号:
    10879992
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
Secure Outsourcing of Genotype Imputation for Privacy-aware Genomic Analysis (RO1HE21)
用于隐私意识基因组分析的基因型插补的安全外包 (RO1HE21)
  • 批准号:
    10587347
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
Outsourcing Property Tax Re-Assessments: Empirical Evaluation
外包财产税重新评估:实证评估
  • 批准号:
    2315488
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10480884
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
Supplement: SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
补充:SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10594084
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10435804
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
The effects of increased international outsourcing on welfare in developed and developing countries
国际外包增加对发达国家和发展中国家福利的影响
  • 批准号:
    21K01445
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10622545
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
Theoretical analysis on international outsourcing and economic growth
国际外包与经济增长的理论分析
  • 批准号:
    20K13503
  • 财政年份:
    2020
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Secure Outsourcing of Program Execution with Private Inputs
使用私人输入安全外包程序执行
  • 批准号:
    20K11807
  • 财政年份:
    2020
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了