Logic Forest: A Statistical Method for Biomarker Discovery
逻辑森林:生物标志物发现的统计方法
基本信息
- 批准号:7590811
- 负责人:
- 金额:$ 7.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBiological MarkersCancer DetectionCategoriesCause of DeathClassificationClinicalComplexDevelopmentDiagnosticDiagnostic testsDisease regressionDivision of Cancer PreventionEarly DiagnosisEvaluationGenesGoalsIndividualLogicMalignant NeoplasmsMethodologyMethodsModelingOutcomePatientsPerformancePhysiciansPrimary PreventionPublic HealthRateRecurrent Malignant NeoplasmResearchRiskRisk AssessmentScreening procedureSensitivity and SpecificitySeverity of illnessStatistical MethodsSystemTechniquesTechnologyTestingTranslationsTreesVotinganticancer researchbasecancer diagnosiscancer riskcancer therapydesireforestimprovedmortalityoutcome forecastpre-clinicaltooltool development
项目摘要
DESCRIPTION (provided by applicant):
Despite the many advances in cancer diagnosis and therapy, cancer remains the second leading cause of death in the US. This is due in part to lack of adequate methods for early detection [1-3]. Multiple studies cite the need for a noninvasive test that would be both sensitive and specific for a particular cancer [5-8]. A diagnostic test based on multiple biomarkers may be necessary to achieve the desired sensitivity and specificity [12]. Statistical methodologies that can model complex biologic interactions and that are easily interpretable allow for the translation of biomarker research into diagnostic tools. Logic regression, a relatively new multivariable regression method that predicts binary outcomes using logical combinations of binary predictors, has the capability to model the complex interactions in biologic systems in easily interpretable models [9]. The three specific aims for this proposal will develop and assess new statistical methods that extend the capability of current logic regression methodology to improve identification and evaluation of combinations of biomarkers for cancer. Aim 1 extends logic regression from a single logic tree model to an ensemble of logic trees for analysis of binary predictors and a binary outcome. The ensemble model will classify binary outcomes by popular vote in the ensemble. 1a: The predictive accuracy of the ensemble of logic trees model will be compared to the predictive accuracy of a single logic tree model and competing ensemble methods. 1b: The ability of the ensemble model to correctly identify important individual predictors will be evaluated. 1c: The ability of the ensemble to correctly identify combinations of predictors will be evaluated. Aim 2 will extend logic regression methodology to handle classification of ordinal outcomes rather than binary outcomes only. Aim 3 will extend the method developed in aim 2 from a model including only a single ordinal logic tree to an ensemble of ordinal logic trees model for analysis of binary predictors and ordinal outcomes. 3a: Assess the ability of an ensemble of ordinal logic trees to correctly classify observations compared to a single ordinal logic tree model and competing ensemble methods. 3b: The ability of an ensemble of ordinal logic trees to correctly identify important predictors will also be evaluated. 3c: The ability of an ensemble of ordinal logic trees to correctly identify important combinations of predictors will be evaluated. This research fits the NCI Division of Cancer Prevention goal of "Identification, development, and evaluation of biological analytic techniques, methodologies, and clinical technologies relevant to pre-clinical cancer detection and prevention of primary and recurrent cancers." This research is relevant to public health because the objective is to provide analytic tools that will aid in the development of tools for use in cancer risk assessment, screening, prognosis, and treatment which have the potential to decrease the rate of cancer related mortality.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth H. Slate其他文献
Empirical comparisons of heterogeneity magnitudes of the risk difference, relative risk, and odds ratio
- DOI:
10.1186/s13643-022-01895-7 - 发表时间:
2022-02-12 - 期刊:
- 影响因子:3.900
- 作者:
Yuxi Zhao;Elizabeth H. Slate;Chang Xu;Haitao Chu;Lifeng Lin - 通讯作者:
Lifeng Lin
Elizabeth H. Slate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth H. Slate', 18)}}的其他基金
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10196077 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10366073 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
8360482 - 财政年份:2011
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
8167763 - 财政年份:2010
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
7959777 - 财政年份:2009
- 资助金额:
$ 7.3万 - 项目类别:
Biostatistics Training for Basic Biomedical Research
基础生物医学研究的生物统计学培训
- 批准号:
7886099 - 财政年份:2009
- 资助金额:
$ 7.3万 - 项目类别:
Logic Forest: A Statistical Method for Biomarker Discovery
逻辑森林:生物标志物发现的统计方法
- 批准号:
7686707 - 财政年份:2008
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
7720797 - 财政年份:2008
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
7610831 - 财政年份:2007
- 资助金额:
$ 7.3万 - 项目类别:
COBRE: MUSC: CORE B: BIOSTATISTICS CORE
COBRE:MUSC:核心 B:生物统计学核心
- 批准号:
7381883 - 财政年份:2006
- 资助金额:
$ 7.3万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 7.3万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 7.3万 - 项目类别:
Studentship